Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2016_21_1_a0, author = {A. N. Abyzov and A. A. Tuganbaev}, title = {Formal matrices and rings close to regular}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {5--21}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a0/} }
A. N. Abyzov; A. A. Tuganbaev. Formal matrices and rings close to regular. Fundamentalʹnaâ i prikladnaâ matematika, Tome 21 (2016) no. 1, pp. 5-21. http://geodesic.mathdoc.fr/item/FPM_2016_21_1_a0/
[1] Abyzov A. N., “Koltsa formalnykh matrits, blizkie k regulyarnym”, Izv. vyssh. uchebn. zaved. Matematika, 2015, no. 10, 57–60 | Zbl
[2] Abyzov A. N., Tapkin D. T., “Koltsa formalnykh matrits i ikh izomorfizmy”, Sib. matem. zhurn., 56:6 (2015), 1199–1214 | MR | Zbl
[3] Abyzov A. N., Tapkin D. T., “O nekotorykh klassakh kolets formalnykh matrits”, Izv. vyssh. uchebn. zaved. Matematika, 2015, no. 3, 3–14 | MR | Zbl
[4] Abyzov A. N., Tuganbaev A. A., “Gomomorfizmy, blizkie k regulyarnym, i ikh prilozheniya”, Fundament. i prikl. matem., 16:7 (2010), 3–38 | MR
[5] Budanov A. V., “Ob idealakh kolets obobschennykh matrits”, Matem. sb., 202:1 (2011), 3–10 | DOI | MR | Zbl
[6] Krylov P. A., “Ob izomorfizme kolets obobschennykh matrits”, Algebra i logika, 47:4 (2008), 456–463 | MR | Zbl
[7] Krylov P. A., Tuganbaev A. A., “Moduli nad koltsami formalnykh matrits”, Fundament. i prikl. matem., 15:8 (2009), 145–211
[8] Krylov P. A., Tuganbaev A. A., “Formalnye matritsy i ikh opredeliteli”, Fundament. i prikl. matem., 19:1 (2014), 65–119 | MR
[9] Krylov P. A., Tuganbaev A. A., “Gruppy Grotendika i Uaitkheda kolets formalnykh matrits”, Fundament. i prikl. matem., 20:1 (2015), 169–198
[10] Tuganbaev A. A., Teoriya kolets. Arifmeticheskie moduli i koltsa, MTsNMO, M., 2009
[11] Baccella G., “Semi-Artinian V-rings and semi-Artinian Von Neumann regular rings”, J. Algebra, 173 (1995), 587–612 | DOI | MR | Zbl
[12] Breaz S., Calugareanu G., Danchev P., Micu T., “Nil-clean matrix rings”, Linear Algebra Appl., 439 (2013), 3115–3119 | DOI | MR | Zbl
[13] Chen J., Wang Z., Zhou Y., “Rings in which elements are uniquely the sum of an idempotent and a unit that commute”, J. Pure Appl. Algebra, 213:2 (2009), 215–223 | DOI | MR | Zbl
[14] Diesl A. J., “Nil-clean rings”, J. Algebra, 383 (2013), 197–211 | DOI | MR | Zbl
[15] Haghany A., “Injectivity conditions over a formal triangular matrix ring”, Arch. Math., 78 (2002), 268–274 | DOI | MR | Zbl
[16] Haghany A., Mazrooei M., Vedadi M. R., “Pure projectivity and pure injectivity over formal triangular matrix rings”, J. Algebra Its Appl., 11:6 (2012), 1250107 | DOI | MR | Zbl
[17] Haghany A., Varadarajan K., “Study of formal triangular matrix rings”, Commun. Algebra, 27:11 (1999), 5507–5525 | DOI | MR | Zbl
[18] Haghany A., Varadarajan K., “Study of modules over formal triangular matrix rings”, J. Pure Appl. Algebra, 147:1 (2000), 41–58 | DOI | MR | Zbl
[19] Keskin-Tütüncü D., Kalebogaz B., “A study on semi-projective covers, semi-projective modules and formal triangular matrix rings”, Palestine J. Math., 3, Spec. 1 (2014), 374–382 | MR | Zbl
[20] Tang G., Li C., Zhou Y., “Study of Morita contexts”, Commun. Algebra, 42 (2014), 1668–1681 | DOI | MR | Zbl
[21] Tang G., Zhou Y., “A class of formal matrix rings”, Linear Algebra Appl., 438 (2013), 4672–4688 | DOI | MR | Zbl
[22] Tang G., Zhou Y., “Strong cleanness of generalized matrix rings over a local ring”, Linear Algebra Its Appl., 437 (2012), 2546–2559 | DOI | MR | Zbl
[23] Tuganbaev A. A., Rings Close to Regular, Kluwer Academic, Dordrecht, 2002 | MR | Zbl
[24] Zelmanowitz J., “Regular modules”, Trans. Amer. Math. Soc., 163 (1972), 341–355 | DOI | MR | Zbl
[25] Zhou Y., “On (semi)regularity and the total of rings and modules”, J. Algebra, 322 (2009), 562–578 | DOI | MR | Zbl