On the depth of $k$-valued logic functions over arbitrary bases
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 6, pp. 155-158.

Voir la notice de l'article provenant de la source Math-Net.Ru

The behavior of the Shannon function of the depth of $k$-valued logic functions realized by circuits over an arbitrary complete basis is examined. For all $k$, $k \ge 3$, for an arbitrary basis of $k$-valued logic functions, the existence of the asymptotic behavior of the Shannon function of the depth is established. The asymptotic behavior is linear for finite bases and it is constant or logarithmic for infinite bases. Thus, the complete picture of asymptotic behavior of the Shannon function of the depth is obtained for all $k$, $k \ge 2$.
@article{FPM_2015_20_6_a6,
     author = {A. V. Kochergin},
     title = {On the depth of $k$-valued logic functions over arbitrary bases},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {155--158},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a6/}
}
TY  - JOUR
AU  - A. V. Kochergin
TI  - On the depth of $k$-valued logic functions over arbitrary bases
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 155
EP  - 158
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a6/
LA  - ru
ID  - FPM_2015_20_6_a6
ER  - 
%0 Journal Article
%A A. V. Kochergin
%T On the depth of $k$-valued logic functions over arbitrary bases
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 155-158
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a6/
%G ru
%F FPM_2015_20_6_a6
A. V. Kochergin. On the depth of $k$-valued logic functions over arbitrary bases. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 6, pp. 155-158. http://geodesic.mathdoc.fr/item/FPM_2015_20_6_a6/

[1] Gashkov S. B., “O glubine bulevykh funktsii”, Probl. kibernet., 1978, no. 34, 265–268 | Zbl

[2] Kasim-Zade O. M., “O glubine bulevykh funktsii pri realizatsii skhemami nad proizvolnym bazisom”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2007, no. 1, 18–21 | MR | Zbl

[3] Kasim-Zade O. M., “O glubine bulevykh funktsii nad proizvolnym beskonechnym bazisom”, Diskret. analiz i issled. operatsii. Ser. 1, 14:1 (2007), 45–69 | MR | Zbl

[4] Kasim-Zade O. M., “O glubine bulevykh funktsii pri realizatsii skhemami nad proizvolnym beskonechnym bazisom”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2012, no. 6, 55–57 | MR

[5] Kochergin A. V., “O glubine funktsii $k$-znachnoi logiki v konechnykh bazisakh”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2013, no. 1, 56–59 | Zbl

[6] Kochergin A. V., “O glubine funktsii mnogoznachnoi logiki pri realizatsii skhemami nad proizvolnym beskonechnym bazisom”, Materialy IX molodezhnoi nauchnoi shkoly po diskretnoi matematike i ee prilozheniyam (Moskva, 16–21 sentyabrya 2013 g.), Izd-vo IPM im. M. V. Keldysha, M., 2013, 61–66

[7] Lozhkin S. A., “O glubine funktsii algebry logiki v nekotorykh bazisakh”, Ann. Univ. Sci. Budapest. Sec. Comput., 4 (1983), 113–125 | MR | Zbl

[8] Lozhkin S. A., “O glubine funktsii algebry logiki v proizvolnom polnom bazise”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1996, no. 2, 80–82

[9] Lupanov O. B., “O skhemakh iz funktsionalnykh elementov s zaderzhkami”, Probl. kibernet., 1970, no. 23, 43–81 | MR | Zbl

[10] Lupanov O. B., Asimptoticheskie otsenki slozhnosti upravlyayuschikh sistem, Izd-vo Mosk. un-ta, M., 1984

[11] Sevidzh Dzh. E., Slozhnost vychislenii, Faktorial, M., 1998