Determinants of generalized matrices of order~$2$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 5, pp. 95-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of the determinant of a generalized matrix of order $2$ is introduced, and some properties of such determinants are presented.
@article{FPM_2015_20_5_a9,
     author = {P. A. Krylov},
     title = {Determinants of generalized matrices of order~$2$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {95--112},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_5_a9/}
}
TY  - JOUR
AU  - P. A. Krylov
TI  - Determinants of generalized matrices of order~$2$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 95
EP  - 112
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_5_a9/
LA  - ru
ID  - FPM_2015_20_5_a9
ER  - 
%0 Journal Article
%A P. A. Krylov
%T Determinants of generalized matrices of order~$2$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 95-112
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_5_a9/
%G ru
%F FPM_2015_20_5_a9
P. A. Krylov. Determinants of generalized matrices of order~$2$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 5, pp. 95-112. http://geodesic.mathdoc.fr/item/FPM_2015_20_5_a9/

[1] Krylov P. A., Tuganbaev A. A., “Moduli nad koltsami formalnykh matrits”, Fundament. i prikl. matem., 15:8 (2008), 145–211

[2] Krylov P. A., Tuganbaev A. A., “Idempotentnye funktory i lokalizatsii v kategoriyakh modulei i abelevykh grupp”, Fundament. i prikl. matem., 16:7 (2010), 75–159

[3] Krylov P. A., “Isomorphism of generalized matrix rings”, Algebra Logic, 47:4 (2008), 258–262 | DOI | MR | Zbl

[4] Krylov P. A., Mikhalev A. V., Tuganbaev A. A., Endomorphism Rings of Abelian Groups, Kluwer Academic, Dordrecht, 2003 | MR | Zbl

[5] Krylov P. A., Tuganbaev A. A., Modules over Discrete Valuation Domains, De Gruyter Exp. Math., 43, Walter de Gruyter, Berlin, 2008 | DOI | Zbl

[6] Tang G., Zhou Y., “Strong cleanness of generalized matrix rings over a local ring”, Linear Algebra Appl., 437 (2012), 2546–2559 | DOI | MR | Zbl