Radical properties of lattice $\mathcal{K}$-ordered algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 5, pp. 89-93
Voir la notice de l'article provenant de la source Math-Net.Ru
Kopytov's $\mathcal{K}$-order for any algebras over a field is considered. Some results concerning relationships between $l$-prime radicals and prime radicals in lattice $\mathcal{K}$-ordered algebras over partially ordered fields are obtained. Also, the notion of a saturated system in an $l$-algebra is introduced and some properties of saturated systems of lattice $\mathcal{K}$-ordered algebras are presented.
@article{FPM_2015_20_5_a8,
author = {J. V. Kochetova},
title = {Radical properties of lattice $\mathcal{K}$-ordered algebras},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {89--93},
publisher = {mathdoc},
volume = {20},
number = {5},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_5_a8/}
}
J. V. Kochetova. Radical properties of lattice $\mathcal{K}$-ordered algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 5, pp. 89-93. http://geodesic.mathdoc.fr/item/FPM_2015_20_5_a8/