Homomorphisms of rank-$1$ quotient divisible groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 5, pp. 57-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

Torsion-free quotient divisible groups were introduced by R. Beaumont and R. Pierce in 1961. In 1998, A. A. Fomin and W. Wickless defined quotient divisible mixed groups and proved that categories of mixed quotient divisible groups and finite-rank torsion-free groups with quasihomomorphisms as morphisms are dual. In studying finite-rank torsion-free groups, rank-$1$ torsion-free groups play an important role, as many problems that are being solved in this class come to them. This paper is devoted to the study of the homomorphism groups of rank-$1$ quotient divisible groups. The main achieved result is a full description of the homomorphism group in the language of characteristics.
@article{FPM_2015_20_5_a5,
     author = {O. I. Davydova},
     title = {Homomorphisms of rank-$1$ quotient divisible groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {57--60},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_5_a5/}
}
TY  - JOUR
AU  - O. I. Davydova
TI  - Homomorphisms of rank-$1$ quotient divisible groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 57
EP  - 60
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_5_a5/
LA  - ru
ID  - FPM_2015_20_5_a5
ER  - 
%0 Journal Article
%A O. I. Davydova
%T Homomorphisms of rank-$1$ quotient divisible groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 57-60
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_5_a5/
%G ru
%F FPM_2015_20_5_a5
O. I. Davydova. Homomorphisms of rank-$1$ quotient divisible groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 5, pp. 57-60. http://geodesic.mathdoc.fr/item/FPM_2015_20_5_a5/

[1] Davydova O. I., “Faktorno delimye gruppy ranga $1$”, Fundament. i prikl. matem., 13:3 (2007), 25–33 | MR

[2] Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974; т. 2, 1977

[3] Beaumont R., Pierce R., “Torsion-free rings”, Illinois J. Math., 5 (1961), 61–98 | MR | Zbl

[4] Fomin A. A., Wickless W., “Quotient divisible Abelian groups”, Proc. Amer. Math. Soc., 126 (1998), 45–52 | DOI | MR | Zbl