Normal determinability of torsion-free Abelian groups by their holomorphs
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 5, pp. 39-55
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate torsion-free Abelian groups that are decomposable into direct sums or direct products of homogeneous groups normally defined by their holomorphs. Properties of normal Abelian subgroups of holomorphs of torsion-free Abelian groups are also studied.
@article{FPM_2015_20_5_a4,
author = {S. Ya. Grinshpon and I. E. Grinshpon},
title = {Normal determinability of torsion-free {Abelian} groups by their holomorphs},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {39--55},
publisher = {mathdoc},
volume = {20},
number = {5},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_5_a4/}
}
TY - JOUR AU - S. Ya. Grinshpon AU - I. E. Grinshpon TI - Normal determinability of torsion-free Abelian groups by their holomorphs JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2015 SP - 39 EP - 55 VL - 20 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2015_20_5_a4/ LA - ru ID - FPM_2015_20_5_a4 ER -
S. Ya. Grinshpon; I. E. Grinshpon. Normal determinability of torsion-free Abelian groups by their holomorphs. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 5, pp. 39-55. http://geodesic.mathdoc.fr/item/FPM_2015_20_5_a4/