Normal determinability of torsion-free Abelian groups by their holomorphs
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 5, pp. 39-55

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate torsion-free Abelian groups that are decomposable into direct sums or direct products of homogeneous groups normally defined by their holomorphs. Properties of normal Abelian subgroups of holomorphs of torsion-free Abelian groups are also studied.
@article{FPM_2015_20_5_a4,
     author = {S. Ya. Grinshpon and I. E. Grinshpon},
     title = {Normal determinability of torsion-free {Abelian} groups by their holomorphs},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {39--55},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_5_a4/}
}
TY  - JOUR
AU  - S. Ya. Grinshpon
AU  - I. E. Grinshpon
TI  - Normal determinability of torsion-free Abelian groups by their holomorphs
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 39
EP  - 55
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_5_a4/
LA  - ru
ID  - FPM_2015_20_5_a4
ER  - 
%0 Journal Article
%A S. Ya. Grinshpon
%A I. E. Grinshpon
%T Normal determinability of torsion-free Abelian groups by their holomorphs
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 39-55
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_5_a4/
%G ru
%F FPM_2015_20_5_a4
S. Ya. Grinshpon; I. E. Grinshpon. Normal determinability of torsion-free Abelian groups by their holomorphs. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 5, pp. 39-55. http://geodesic.mathdoc.fr/item/FPM_2015_20_5_a4/