Normal determinability of torsion-free Abelian groups by their holomorphs
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 5, pp. 39-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate torsion-free Abelian groups that are decomposable into direct sums or direct products of homogeneous groups normally defined by their holomorphs. Properties of normal Abelian subgroups of holomorphs of torsion-free Abelian groups are also studied.
@article{FPM_2015_20_5_a4,
     author = {S. Ya. Grinshpon and I. E. Grinshpon},
     title = {Normal determinability of torsion-free {Abelian} groups by their holomorphs},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {39--55},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_5_a4/}
}
TY  - JOUR
AU  - S. Ya. Grinshpon
AU  - I. E. Grinshpon
TI  - Normal determinability of torsion-free Abelian groups by their holomorphs
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 39
EP  - 55
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_5_a4/
LA  - ru
ID  - FPM_2015_20_5_a4
ER  - 
%0 Journal Article
%A S. Ya. Grinshpon
%A I. E. Grinshpon
%T Normal determinability of torsion-free Abelian groups by their holomorphs
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 39-55
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_5_a4/
%G ru
%F FPM_2015_20_5_a4
S. Ya. Grinshpon; I. E. Grinshpon. Normal determinability of torsion-free Abelian groups by their holomorphs. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 5, pp. 39-55. http://geodesic.mathdoc.fr/item/FPM_2015_20_5_a4/

[1] Bekker I. Kh., “O golomorfakh abelevykh grupp”, Sib. matem. zhurn., 5:6 (1964), 1228–1238 | MR | Zbl

[2] Bekker I. Kh., “O golomorfakh neredutsirovannykh abelevykh grupp”, Izv. vyssh. uchebn. zaved. Matematika, 1968, no. 8, 3–8 | MR | Zbl

[3] Bekker I. Kh., “O golomorfakh abelevykh grupp bez krucheniya”, Izv. vyssh. uchebn. zaved. Matematika, 1974, no. 3, 3–13 | MR

[4] Bekker I. Kh., “Abelevy gruppy s izomorfnymi golomorfami”, Izv. vyssh. uchebn. zaved. Matematika, 1975, no. 3, 97–99 | MR | Zbl

[5] Bekker I. Kh., “Abelevy golomorfnye gruppy”, Mezhdunar. konf. Vsesibirskie chteniya po matem. i mekh., Izbrannye doklady, v. 1, Matematika, 1997, 43–47

[6] Bekker I. Kh., Grinshpon S. Ya., “Pochti golomorfno izomorfnye primarnye abelevy gruppy”, Gruppy i moduli, Mezhvuz. temat. sb. nauch. tr., 1976, 90–103

[7] Grinshpon I. E., “Normalnye podgruppy golomorfov abelevykh grupp i pochti golomorfnyi izomorfizm”, Fundament. i prikl. matem., 13:3 (2007), 9–16 | MR

[8] Grinshpon S. Ya., “Pochti golomorfno izomorfnye abelevy gruppy”, Tr. TGU, 220:3 (1975), 78–84

[9] Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974

[10] Fuks L., Beskonechnye abelevy gruppy, v. 2, Mir, M., 1977

[11] Miller G. A., “On the multiple holomorph of a group”, Math. Ann., 66 (1908), 133–142 | DOI | MR

[12] Mills W. H., “Multiple holomorphs of finitely generated Abelian groups”, Trans. Amer. Math. Soc., 71:3 (1950), 379–392 | DOI | MR

[13] Mills W. H., “On the non-isomorphism of certain holomorphs”, Trans. Amer. Math. Soc., 74:3 (1953), 428–443 | DOI | MR | Zbl