On the quasi-endomorphism rings of quasi-decomposable torsion-free Abelian groups of rank~$4$ with a~strongly indecomposable quasi-summand of rank~$2$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 5, pp. 209-225.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a description of quasi-endomorphism rings of torsion-free Abelian groups $G$ of rank $4$ that are quasi-decomposable into a direct sum of groups $A_1$ and $A_2$ of rank $1$ and a strongly indecomposable group $B$ of rank $2$ in the case where the quasi-homomorphism group $\mathbb {Q} \otimes \operatorname{Hom}(B, A_2)$ has rank $2$.
@article{FPM_2015_20_5_a18,
     author = {A. V. Cherednikova},
     title = {On the quasi-endomorphism rings of quasi-decomposable torsion-free {Abelian} groups of rank~$4$ with a~strongly indecomposable quasi-summand of rank~$2$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {209--225},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_5_a18/}
}
TY  - JOUR
AU  - A. V. Cherednikova
TI  - On the quasi-endomorphism rings of quasi-decomposable torsion-free Abelian groups of rank~$4$ with a~strongly indecomposable quasi-summand of rank~$2$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 209
EP  - 225
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_5_a18/
LA  - ru
ID  - FPM_2015_20_5_a18
ER  - 
%0 Journal Article
%A A. V. Cherednikova
%T On the quasi-endomorphism rings of quasi-decomposable torsion-free Abelian groups of rank~$4$ with a~strongly indecomposable quasi-summand of rank~$2$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 209-225
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_5_a18/
%G ru
%F FPM_2015_20_5_a18
A. V. Cherednikova. On the quasi-endomorphism rings of quasi-decomposable torsion-free Abelian groups of rank~$4$ with a~strongly indecomposable quasi-summand of rank~$2$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 5, pp. 209-225. http://geodesic.mathdoc.fr/item/FPM_2015_20_5_a18/

[1] Pirs R., Assotsiativnye algebry, Mir, M., 1986 | MR

[2] Fomin A. A., “Abelevy gruppy s odnim $\tau$-adicheskim sootnosheniem”, Algebra i logika, 28:1 (1989), 83–104 | Zbl

[3] Fuks L., Beskonechnye abelevy gruppy, v. 2, Mir, M., 1977

[4] Cherednikova A. V., “Koltsa kvaziendomorfizmov abelevykh pochti vpolne razlozhimykh grupp bez krucheniya ranga $3$”, Abelevy gruppy i moduli, 13–14, Izd-vo Tomsk. un-ta, Tomsk, 1996, 237–242

[5] Cherednikova A. V., “Koltsa kvaziendomorfizmov kvazirazlozhimykh abelevykh grupp bez krucheniya ranga $3$”, Abelevy gruppy i moduli, 13–14, Izd-vo Tomsk. un-ta, Tomsk, 1996, 224–236

[6] Arnold D. M., Finite Rank Torsion Free Abelian Groups and Rings, Lect. Notes Math., 931, Springer, Berlin, 1982 | DOI | MR | Zbl

[7] Beaumont R. A., Pierce R. S., “Torsion free groups of rank two”, Mem. Amer. Math. Soc., 38 (1961), 1–41 | MR

[8] Reid J. D., “On the rings of quasi-endomorphism of torsion-free Abelian groups”, Topics in Abelian Groups, Scott, Foresman, Chicago, 1963, 51–68 | MR

[9] Warfield R., “Homomorphisms and duality for torsion free groups”, Math. Z., 107 (1968), 189–200 | DOI | MR | Zbl