Self-small $\mathrm{SP}$-groups with clean endomorphism rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 5, pp. 141-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, some aspects of cleanness of endomorphism rings of $\mathrm{SP}$-groups are considered. These groups form one of the classes of mixed Abelian groups. The cleanness of endomorphism rings of self-small $\mathrm{SP}$-groups is proved. Some sufficient conditions are found for the converse proposition to hold.
@article{FPM_2015_20_5_a13,
     author = {K. S. Sorokin},
     title = {Self-small $\mathrm{SP}$-groups with clean endomorphism rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {141--148},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_5_a13/}
}
TY  - JOUR
AU  - K. S. Sorokin
TI  - Self-small $\mathrm{SP}$-groups with clean endomorphism rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 141
EP  - 148
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_5_a13/
LA  - ru
ID  - FPM_2015_20_5_a13
ER  - 
%0 Journal Article
%A K. S. Sorokin
%T Self-small $\mathrm{SP}$-groups with clean endomorphism rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 141-148
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_5_a13/
%G ru
%F FPM_2015_20_5_a13
K. S. Sorokin. Self-small $\mathrm{SP}$-groups with clean endomorphism rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 5, pp. 141-148. http://geodesic.mathdoc.fr/item/FPM_2015_20_5_a13/

[1] Krylov P. A., “Ob odnom klasse smeshannykh abelevykh grupp”, Vestn. TGU, 269 (2000), 29–34

[2] Krylov P. A., “Radikal Dzhekobsona koltsa endomorfizmov abelevoi gruppy”, Algebra i logika, 43:1 (2004), 60–76 | MR | Zbl

[3] Sorokin K. S., “Vpolne razlozhimye abelevy gruppy s chistymi koltsami endomorfizmov”, Fundament. i prikl. matem., 17:8 (2011/2012), 105–108

[4] Camillo V. P., Khurana D., “A characterization of unit-regular rings”, Commun. Algebra, 29:6 (2001), 2293–2295 | DOI | MR | Zbl

[5] Camillo V. P., Khurana D., Lam T. Y., Nicholson W. K., Zhou Y., “Continuous modules are clean”, J. Algebra, 304 (2006), 94–111 | DOI | MR | Zbl

[6] Goldsmith B., Vámos P., “A note on clean Abelian groups”, Rend. Sem. Mat. Univ. Padova, 117 (2007), 181–191 | MR | Zbl

[7] Han J., Nicholson W. K., “Extension of clean rings”, Commun. Algebra, 29:6 (2001), 2589–2595 | DOI | MR | Zbl

[8] Handelman D., “Perspectivity and cancellation in regular rings”, J. Algebra, 48 (1977), 1–16 | DOI | MR | Zbl

[9] Nicholson W. K., “Lifting idempotents and exchange rings”, Trans. Amer. Math. Soc., 229 (1977), 269–278 | DOI | MR | Zbl

[10] Nicholson W. K., Varadarajan K., Zhou Y., “Clean endomorphism rings”, Arch. Math., 83 (2004), 340–343 | DOI | MR | Zbl