Algebraically compact Abelian groups with $\mathrm{UA}$-rings of endomorphisms
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 5, pp. 121-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

A ring $K$ is said to be a unique addition ring ($\mathrm{UA}$-ring) if on its multiplicative semigroup $(K, \cdot)$ it is possible to set only one binary operation of $+$ turning $(K, \cdot, +)$ into a ring. We call an Abelian group an $\mathrm{End}$-$\mathrm{UA}$-group if its endomorphism ring is a $\mathrm{UA}$-ring. In this paper, $\mathrm{End}$-$\mathrm{UA}$-groups are found in a class of algebraically compact Abelian groups.
@article{FPM_2015_20_5_a11,
     author = {O. V. Lyubimtsev},
     title = {Algebraically compact {Abelian} groups with $\mathrm{UA}$-rings of endomorphisms},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {121--129},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_5_a11/}
}
TY  - JOUR
AU  - O. V. Lyubimtsev
TI  - Algebraically compact Abelian groups with $\mathrm{UA}$-rings of endomorphisms
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 121
EP  - 129
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_5_a11/
LA  - ru
ID  - FPM_2015_20_5_a11
ER  - 
%0 Journal Article
%A O. V. Lyubimtsev
%T Algebraically compact Abelian groups with $\mathrm{UA}$-rings of endomorphisms
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 121-129
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_5_a11/
%G ru
%F FPM_2015_20_5_a11
O. V. Lyubimtsev. Algebraically compact Abelian groups with $\mathrm{UA}$-rings of endomorphisms. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 5, pp. 121-129. http://geodesic.mathdoc.fr/item/FPM_2015_20_5_a11/

[1] Lyubimtsev O. V., “Separabelnye abelevy gruppy bez krucheniya s UA-koltsami endomorfizmov”, Fundament. i prikl. matem., 4:4 (1998), 1419–1422 | MR | Zbl

[2] Lyubimtsev O. V., “Periodicheskie abelevy gruppy s UA-koltsami endomorfizmov”, Matem. zametki, 70:5 (2001), 736–741 | DOI | MR | Zbl

[3] Mikhalev A. V., “Multiplikativnaya klassifikatsiya assotsiativnykh kolets”, Matem. sb., 135:2 (1988), 210–224 | MR | Zbl

[4] Fuks L., Beskonechnye abelevy gruppy, v. 1, 2, Mir, M., 1974

[5] Nelius Chr.-F., Ringe mit eindeutiger Addition, Padeborn, 1974

[6] Stephenson W., “Unique addition rings”, Can. J. Math., 21:6 (1969), 1455–1463 | DOI | MR

[7] Szele T., “Gruppentheoretische Beziehungen der Primkörper”, Mat. Aineiden Aikakauskirja, 13 (1949), 80–85 | MR