Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2015_20_3_a9, author = {V. P. Maslov and A. I. Shafarevich}, title = {Fomenko invariants in the asymptotic theory of the {Navier--Stokes} equations}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {191--212}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a9/} }
TY - JOUR AU - V. P. Maslov AU - A. I. Shafarevich TI - Fomenko invariants in the asymptotic theory of the Navier--Stokes equations JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2015 SP - 191 EP - 212 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a9/ LA - ru ID - FPM_2015_20_3_a9 ER -
V. P. Maslov; A. I. Shafarevich. Fomenko invariants in the asymptotic theory of the Navier--Stokes equations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 3, pp. 191-212. http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a9/
[1] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. 1, 2, Izd-vo Udmurtskogo un-ta, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 1999 | MR
[2] Vakulenko S. A., Molotkov I. A., “Volny v nelineinoi neodnorodnoi srede, sosredotochennye v okrestnosti zadannoi krivoi”, DAN SSSR, 262:3 (1982), 587–591 | MR
[3] Dobrokhotov S. Yu., Maslov V. P., “Konechnozonnye pochti periodicheskie resheniya v VKB-priblizheniyakh”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 15, 1980, 3–94 | MR | Zbl
[4] Maslov V. P., “Kogerentnye struktury, rezonansy i asimptoticheskaya needinstvennost dlya uravnenii Nave–Stoksa pri bolshikh chislakh Reinoldsa”, UMN, 41:6 (1986), 19–35 | MR
[5] Maslov V. P., Asimptoticheskie metody resheniya psevdodifferentsialnykh uravnenii, Nauka, M., 1987 | MR
[6] Maslov V. P., Omelyanov G. A., “Asimptoticheskie solitonoobraznye resheniya uravnenii s maloi dispersiei”, UMN, 36:3 (1981), 63–126 | MR | Zbl
[7] Maslov V. P., Omelyanov G. A., “Bystroostsilliruyuschie asimptoticheskie resheniya uravnenii MGD v priblizhenii Tokamaka”, Teor. i matem. fiz., 92:2 (1992), 269–292 | MR | Zbl
[8] Shafarevich A. I., “Differentsialnye uravneniya na grafakh, opisyvayuschie asimptoticheskie resheniya uravnenii Nave–Stoksa, sosredotochennye v maloi okrestnosti krivoi”, Differents. uravn., 34:8 (1998), 1119–1130 | MR | Zbl
[9] Shafarevich A. I., “Obobschënnye uravneniya Prandtlya–Maslova na grafakh, opisyvayuschie rastyanutye vikhri v neszhimaemoi zhidkosti”, Dokl. RAN, 358:6 (1998), 752–756 | MR
[10] Arnold V. I., Khesin B., Topological Methods in Hydrodynamics, Appl. Math. Sci., 125, Springer, New York, 1998 | MR | Zbl
[11] Flashka H., Forest M., McLaughlin D., “The multiphase averaging and the inverse spectral solution of Korteweg–de Vries equations”, Comm. Pure Appl. Math., 33:6 (1980), 739–784 | DOI | MR
[12] Maslov V. P., Shafarevich A. I., “Rapidly oscillating asymptotic solutions of the Navier–Stokes equations, coherent structures, Fomenko invariants, Kolmogorov spectrum, and flicker noise”, Russ. J. Math. Phys., 13:4 (2006), 414–425 | DOI | MR
[13] Maslov V. P., Shafarevich A. I., “Asymptotic solutions of the Navier–Stokes equations describing periodic systems of localized vortices”, Math. Notes, 90:5 (2011), 686–700 | DOI | Zbl
[14] Maslov V. P., Shafarevich A. I., “Asymptotic solutions of the Navier–Stokes equations and systems of stretched vortices filling a three-dimensional volume”, Math. Notes, 91:2 (2012), 207–216 | DOI | MR | Zbl
[15] Maslov V. P., Shafarevich A. I., “Asymptotic solutions of Navier–Stokes equations and topological invariants of vector fields and Liouville foliations”, Theor. Math. Phys., 180:2 (2014), 967–982 | DOI | MR | Zbl
[16] Moffatt H. K., “Magnetostatic equilibria and analogous Euler flows of arbitrary complex topology. 1”, Fundam. J. Fluid Mech., 159 (1985), 359–378 | DOI | MR | Zbl
[17] Moffatt H. K., “On the existence of Euler flows that are topologically accessible from a given flow”, Rev. Brasil. Cienc. Mec., 9 (1987), 93–101
[18] Moffatt H. K., “Generalized vortex rings with and without swirl”, Fluid Dynamics Research, 3 (1988), 22–30 | DOI
[19] Shafarevich A. I., “Asymptotical and topological constructions in hydrodynamics”, Operator Methods in Ordinary and Partial Differential Equations, S. Kovalevsky Symp. (Univ. Stockholm, June 2000), Pt. 2, Operator Theory: Advances and Applications, 132, Birkhäuser, Basel, 2002, 347–359 | MR | Zbl