Invariant foliations of nondegenerate bi-Hamiltonian structures
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 3, pp. 91-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we describe all invariant distributions of nondegenerate bi-Hamiltonian structures and investigate their integrability in the neighborhood of a generic point.
@article{FPM_2015_20_3_a5,
     author = {I. K. Kozlov},
     title = {Invariant foliations of nondegenerate {bi-Hamiltonian} structures},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {91--111},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a5/}
}
TY  - JOUR
AU  - I. K. Kozlov
TI  - Invariant foliations of nondegenerate bi-Hamiltonian structures
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 91
EP  - 111
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a5/
LA  - ru
ID  - FPM_2015_20_3_a5
ER  - 
%0 Journal Article
%A I. K. Kozlov
%T Invariant foliations of nondegenerate bi-Hamiltonian structures
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 91-111
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a5/
%G ru
%F FPM_2015_20_3_a5
I. K. Kozlov. Invariant foliations of nondegenerate bi-Hamiltonian structures. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 3, pp. 91-111. http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a5/

[1] Bolsinov A. V., “Kriterii polnoty semeistva funktsii v involyutsii, postroennogo metodom sdviga argumenta”, Dokl. AN SSSR, 301:5 (1988), 1037–1040 | MR

[2] Bolsinov A. V., “Soglasovannye skobki Puassona na algebrakh Li i polnota semeistv funktsii v involyutsii”, Izv. AN SSSR. Ser. matem., 55:1 (1991), 68–92 | MR | Zbl

[3] Bolsinov A. V., Izosimov A. M., Konyaev A. Yu., Oshemkov A. A., “Algebra i topologiya integriruemykh sistem. Zadachi dlya issledovaniya”, Tr. seminara po vekt. i tenz. analizu, 28, 2012, 119–191

[4] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | MR

[5] Gurevich G. B., “Kanonizatsiya pary bivektorov”, Tr. seminara po vekt. i tenz. analizu, 8, 1950, 355–363 | Zbl

[6] Kozlov I. K., “Elementarnoe dokazatelstvo teoremy Zhordana–Kronekera”, Matem. zametki, 94:6 (2013), 857–870 | DOI | MR | Zbl

[7] Mischenko A. S., Fomenko A. T., “Obobschënnyi metod Liuvillya integrirovaniya gamiltonovykh sistem”, Funkts. analiz i ego pril., 12:2 (1978), 46–56 | MR | Zbl

[8] Mischenko A. S., Fomenko A. T., “Uravneniya Eilera na konechnomernykh gruppakh Li”, Izv. AN SSSR. Ser. matem., 42:2 (1978), 396–415 | MR | Zbl

[9] Trofimov V. V., Fomenko A. T., Algebra i geometriya integriruemykh gamiltonovykh differentsialnykh uravnenii, Faktorial, M., 1995 | MR

[10] Panasyuk A., “Veronese webs for bihamiltonian structures of higher corank”, Banach Center Publ., 51 (2000), 251–261 | MR | Zbl

[11] Thompson R. C., “Pencils of complex and real symmetric and skew matrices”, Linear Algebra Its Appl., 147 (1991), 323–371 | DOI | MR | Zbl

[12] Turiel F. J., “Classification locale simultanée de deux formes symplectiques compatibles”, Manuscripta Math., 82:1 (1994), 349–362 | DOI | MR | Zbl

[13] Turiel F. J., On the local theory of Veronese webs, arXiv: 1001.3098v1

[14] Turiel F. J., The local product theorem for bihamiltonian structures, arXiv: 1107.2243v1

[15] Zakharevich I. S., Kronecker webs, bihamiltonian structures, and the method of argument translation, arXiv: math/9908034v3 | MR

[16] Zhang P., Algebraic properties of compatible Poisson structures, Preprint no. 10-02, Loughborough Univ., 2010