The Newton--Nelson equation on fiber bundles with connections
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 3, pp. 61-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is a survey with modifications on the research of the so-called Newton–Nelson equation (the equation of motion in Nelson's stochastic mechanics) on the total space of a bundle in two cases: where the base of the bundle is a Riemannian manifold and the bundle is real and where the base of the bundle is a Lorentz manifold and the bundle is complex. In the latter case, we describe the relations with the equation of motion of the quantum particle in the classical gauge field (the above-mentioned connection). Besides, a certain second-order ordinary differential equation on the bundle with connection that is interpreted as the equation of motion of the classical particle in the classical gauge field is described.
@article{FPM_2015_20_3_a3,
     author = {Yu. E. Gliklikh and N. V. Vinokurova},
     title = {The {Newton--Nelson} equation on fiber bundles with connections},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {61--81},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a3/}
}
TY  - JOUR
AU  - Yu. E. Gliklikh
AU  - N. V. Vinokurova
TI  - The Newton--Nelson equation on fiber bundles with connections
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 61
EP  - 81
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a3/
LA  - ru
ID  - FPM_2015_20_3_a3
ER  - 
%0 Journal Article
%A Yu. E. Gliklikh
%A N. V. Vinokurova
%T The Newton--Nelson equation on fiber bundles with connections
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 61-81
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a3/
%G ru
%F FPM_2015_20_3_a3
Yu. E. Gliklikh; N. V. Vinokurova. The Newton--Nelson equation on fiber bundles with connections. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 3, pp. 61-81. http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a3/

[1] Bishop R. L., Krittenden R. Dzh., Geometriya mnogoobrazii, Mir, M., 1967 | MR

[2] Gliklikh Yu. E., Globalnyi i stokhasticheskii analiz v zadachakh matematicheskoi fiziki, Komkniga, M., 2005

[3] Daletskii Yu. L., Belopolskaya Ya. I., Stokhasticheskie uravneniya i differentsialnaya geometriya, Vyscha shkola, Kiev, 1989 | MR

[4] Partasarati K., Vvedenie v teoriyu veroyatnostei i teoriyu mery, Mir, M., 1988 | MR

[5] Dohrn D., Guerra F., Ruggiero P., “Spinning particles and relativistic particles in framework of Nelson's stochastic mechanics”, Feynman Path Integrals, Proc. Int. Colloq. Held in Marseille, May 1978, Lect. Notes Phys., 106, Springer, Berlin, 1979, 165–181 | DOI | MR

[6] Elworthy K. D., Stochastic Differential Equations on Manifolds, Cambridge Univ. Press, Cambridge, 1982 | MR | Zbl

[7] Gliklikh Yu. E., Global and Stochastic Analysis with Applications to Mathematical Physics, Springer, London, 2011 | MR | Zbl

[8] Gliklikh Yu. E., Ratiner P. S., “On a certain type of second order differential equations on total spaces of fiber bundles with connections”, Nonlinear Analysis in Geometry and Topology, Hadronic Press, Palm Harbor, 2000, 99–106 | MR | Zbl

[9] Gliklikh Yu. E., Vinokurova N. V., “On the motion of a quantum particle in the classical gauge field in the language of stochastic mechanics”, Commun. Statistics Theory Methods, 40:19–20 (2011), 3630–3640 | DOI | MR | Zbl

[10] Gliklikh Yu. E., Vinokurova N. V., “On the Newton–Nelson type equations on vector bundles with connections”, Rend. Sem. Mat. Univ. Politec. Torino (to appear) | MR

[11] Guerra F., Ruggiero P., “A note on relativistic Markov processes”, Lett. Nuovo Cimento, 23 (1978), 529–534 | DOI | MR

[12] Nelson E., “Derivation of the Schrödinger equation from Newtonian mechanics”, Phys. Rev., 150:4 (1966), 1079–1085 | DOI

[13] Nelson E., Quantum Fluctuations, Princeton Univ. Press, Princeton, 1985 | MR | Zbl

[14] Zastawniak T., “A relativistic version of Nelson's stochastic mechanics”, Europhys. Lett., 13 (1990), 13–17 | DOI

[15] Zastawniak T., “Markov diffusion in relativistic stochastic mechanics”, Proc. of Swansea Conf. on Stochastic Mechanics, eds. Truman A. et al., World Scientific, Singapore, 1992, 280–297 | MR