Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2015_20_3_a2, author = {B. D. Gel'man and V. V. Obukhovskii}, title = {On fixed points of acyclic type multivalued maps}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {47--59}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a2/} }
B. D. Gel'man; V. V. Obukhovskii. On fixed points of acyclic type multivalued maps. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 3, pp. 47-59. http://geodesic.mathdoc.fr/item/FPM_2015_20_3_a2/
[1] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., “Topologicheskie metody v teorii nepodvizhnykh tochek mnogoznachnykh tochek mnogoznachnykh otobrazhenii”, UMN, 35:1 (1980), 59–126 | MR | Zbl
[2] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., “Mnogoznachnye otobrazheniya”, Itogi nauki i tekhn. Ser. Matem. anal., 19, 1982, 127–230 | MR | Zbl
[3] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii, Librokom, M., 2011 | MR
[4] Gelman B. D., “K teoremam o nepodvizhnykh tochkakh tipa Kakutani dlya mnogoznachnykh otobrazhenii”, Globalnyi analiz i nelineinye uravneniya, Sb. nauch. tr., Izd-vo VGU, Voronezh, 1988, 117–119 | MR
[5] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR
[6] Sklyarenko E. G., “O nekotorykh prilozheniyakh teorii puchkov v obschei topologii”, UMN, 19:6 (1964), 47–70 | MR | Zbl
[7] Spener E., Algebraicheskaya topologiya, Mir, M., 1971 | MR
[8] Eilenberg S., Montgomery D., “Fixed point theorems for multivalued transformations”, Amer. J. Math., 68 (1946), 214–222 | DOI | MR | Zbl
[9] Górniewicz L., Topological Fixed Point Theory of Multivalued Mappings, Springer, Dordrecht, 2006 | MR | Zbl
[10] Granas A., Dugundji J., Fixed Point Theory, Springer, New York, 2003 | MR | Zbl
[11] Kamenskii M., Obukhovskii V., Zecca P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, Walter de Gruyter, Berlin, 2001 | MR