Transitive Lie algebroids. Categorical point of view
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 2, pp. 133-156.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the functorial property of the inverse image for transitive Lie algebroids is proved and also there is proved the functorial property for all objects that are necessary for building transitive Lie algebroids due to K. Mackenzie – bundles $L$ of finite-dimensional Lie algebras, covariant connections of derivations $\nabla$, associated differential $2$-dimensional forms $\Omega$ with values in the bundle $L$, couplings, and the Mackenzie obstructions. On the base of the functorial properties, a final object for the structure of transitive Lie prealgebroid and for the universal cohomology class inducing the Mackenzie obstruction can be constructed.
@article{FPM_2015_20_2_a9,
     author = {A. S. Mishchenko and Xiaoyu Li},
     title = {Transitive {Lie} algebroids. {Categorical} point of view},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {133--156},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a9/}
}
TY  - JOUR
AU  - A. S. Mishchenko
AU  - Xiaoyu Li
TI  - Transitive Lie algebroids. Categorical point of view
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 133
EP  - 156
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a9/
LA  - ru
ID  - FPM_2015_20_2_a9
ER  - 
%0 Journal Article
%A A. S. Mishchenko
%A Xiaoyu Li
%T Transitive Lie algebroids. Categorical point of view
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 133-156
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a9/
%G ru
%F FPM_2015_20_2_a9
A. S. Mishchenko; Xiaoyu Li. Transitive Lie algebroids. Categorical point of view. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 2, pp. 133-156. http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a9/

[1] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, v. 1, Nauka, M., 1981

[2] Li Syaoyu, Mischenko A. S., “Klassifikatsiya kaplingov dlya tranzitivnykh algebroidov Li”, Dokl. RAN, 460:5 (2015), 517–519 | DOI | MR

[3] Li Xiaoyu, Mishchenko A. S., Comparison of categorical characteristic classes of transitive Lie algebroid with Chern–Weil homomorphism, 2012, arXiv: 1208.6564v1 | MR

[4] Li Xiaoyu, Mishchenko A. S., Description of coupling in the category of transitive Lie algebroids, 2013, arXiv: 1310.5824

[5] Li Xiaoyu, Mishchenko A. S., The existence of coupling in the category of transitive Lie algebroid, 2013, arXiv: 1306.5449

[6] Mackenzie K. C. H., General Theory of Lie Groupoids and Lie Algebroids, Cambridge Univ. Press, Cambridge, 2005 | MR | Zbl

[7] Kubarski J., The Chern–Weil homomorphism of regular Lie algebroids, Publ. Depart. Math., Univ. Claude Bernard – Lyon-1, 1991, 63 pp.

[8] Mishchenko A. S., Transitive Lie algebroids categorical point of view, 2010, arXiv: 1006.4839v1

[9] Mishchenko A. S., Characteristic classes of transitive Lie algebroids. Categorical point of view, 2011, arXiv: 1111.6823v1