Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2015_20_2_a9, author = {A. S. Mishchenko and Xiaoyu Li}, title = {Transitive {Lie} algebroids. {Categorical} point of view}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {133--156}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a9/} }
A. S. Mishchenko; Xiaoyu Li. Transitive Lie algebroids. Categorical point of view. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 2, pp. 133-156. http://geodesic.mathdoc.fr/item/FPM_2015_20_2_a9/
[1] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, v. 1, Nauka, M., 1981
[2] Li Syaoyu, Mischenko A. S., “Klassifikatsiya kaplingov dlya tranzitivnykh algebroidov Li”, Dokl. RAN, 460:5 (2015), 517–519 | DOI | MR
[3] Li Xiaoyu, Mishchenko A. S., Comparison of categorical characteristic classes of transitive Lie algebroid with Chern–Weil homomorphism, 2012, arXiv: 1208.6564v1 | MR
[4] Li Xiaoyu, Mishchenko A. S., Description of coupling in the category of transitive Lie algebroids, 2013, arXiv: 1310.5824
[5] Li Xiaoyu, Mishchenko A. S., The existence of coupling in the category of transitive Lie algebroid, 2013, arXiv: 1306.5449
[6] Mackenzie K. C. H., General Theory of Lie Groupoids and Lie Algebroids, Cambridge Univ. Press, Cambridge, 2005 | MR | Zbl
[7] Kubarski J., The Chern–Weil homomorphism of regular Lie algebroids, Publ. Depart. Math., Univ. Claude Bernard – Lyon-1, 1991, 63 pp.
[8] Mishchenko A. S., Transitive Lie algebroids categorical point of view, 2010, arXiv: 1006.4839v1
[9] Mishchenko A. S., Characteristic classes of transitive Lie algebroids. Categorical point of view, 2011, arXiv: 1111.6823v1