Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2015_20_1_a9, author = {P. A. Krylov and A. A. Tuganbaev}, title = {Grothendieck and {Whitehead} groups of formal matrix rings}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {173--203}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a9/} }
TY - JOUR AU - P. A. Krylov AU - A. A. Tuganbaev TI - Grothendieck and Whitehead groups of formal matrix rings JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2015 SP - 173 EP - 203 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a9/ LA - ru ID - FPM_2015_20_1_a9 ER -
P. A. Krylov; A. A. Tuganbaev. Grothendieck and Whitehead groups of formal matrix rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 1, pp. 173-203. http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a9/
[1] Abyzov A. N., Tapkin D. T., “O nekotorykh klassakh kolets formalnykh matrits”, Izv. vyssh. uchebn. zaved. Matem., 2015, no. 3, 3–14 | Zbl
[2] Krylov P. A., “Ob izomorfizme kolets obobschënnykh matrits”, Algebra i logika, 47:4 (2008), 456–463 | MR | Zbl
[3] Krylov P. A., “O gruppe $K_0$ koltsa obobschënnykh matrits”, Algebra i logika, 52:3 (2013), 370–385 | MR | Zbl
[4] Krylov P. A., “Vychislenie gruppy $K_1$ koltsa obobschënnykh matrits”, Sib. mat. zhurn., 55:4 (2014), 783–789 | MR | Zbl
[5] Krylov P. A., Tuganbaev A. A., “Moduli nad koltsami formalnykh matrits”, Fundament. i prikl. matem., 15:8 (2009), 145–211 | MR
[6] Krylov P. A., Tuganbaev A. A., “Formalnye matritsy i ikh opredeliteli”, Fundament. i prikl. matem., 19:1 (2014), 65–119
[7] Bass H., Algebraic $K$-Theory, Benjamin, New York, 1968 | MR | Zbl
[8] Benkovic̆ D., “Lie derivations on triangular matrices”, Linear Multilinear Algebra, 55 (2007), 619–626 | DOI | MR | Zbl
[9] Benkovic̆ D., Eremita D., “Commuting traces and commutativity preserving maps on triangular algebras”, J. Algebra, 280 (2004), 797–824 | DOI | MR | Zbl
[10] Boboc C., Dăscălescu S., van Wyk L., “Isomorphisms between Morita context rings”, Linear Multilinear Algebra, 60:5 (2012), 545–563 | DOI | MR | Zbl
[11] Bres̆ar M., “Commuting maps: a survey”, Taiwanese J. Math., 8 (2004), 361–397 | MR | Zbl
[12] Chen H., “Morita contexts with many units”, Commun. Algebra, 30:3 (2002), 1499–1512 | DOI | MR | Zbl
[13] Dennis R. K., Geller S., “$K_i$ of upper triangular matrix rings”, Proc. Amer. Math. Soc., 56 (1976), 73–78 | MR | Zbl
[14] Enochs E., Torrecillas B., “Flat covers over formal triangular matrix rings and minimal Quillen factorizations”, Forum Math., 23 (2011), 611–624 | DOI | MR | Zbl
[15] Hao Z., Shum K.-P., “The Grothendieck group of rings of Morita contexts”, Proc. of the 1996 Beijing Int. Conf. on Group Theory, 1997, 88–97 | MR
[16] Khazal R., Dăscălescu S., van Wyk L., “Isomorphism of generalized triangular matrix rings and recovery of tiles”, Int. J. Math. Math. Sci., 9 (2003), 533–538 | DOI | MR | Zbl
[17] Krylov P. A., Mikhalev A. V., Tuganbaev A. A., Endomorphism Rings of Abelian Groups, Kluwer Academic, Dordrecht, 2003 | MR | Zbl
[18] Li Y.-B., Wei F., “Semi-centralizing maps of generalized matrix algebras”, Linear Algebra Appl., 436 (2012), 1122–1153 | DOI | MR | Zbl
[19] Liang X., Wei F., Xiao Z., Fos̆ner A., “Centralizing traces and Lie triple isomorphisms on triangular algebras”, Linear Multilinear Algebra, 8:3 (2014), 821–847
[20] Nauman S. K., “Morita similar matrix rings and their Grothendieck groups”, Aligarh Bull. Math., 23:1–2 (2004), 49–60 | MR
[21] Rosenberg J., Algebraic $K$-Theory and Its Applications, Springer, Berlin, 1994 | MR | Zbl
[22] Xiao Z., Wei F., “Commuting mappings of generalized matrix algebras”, Linear Algebra Appl., 433 (2010), 2178–2197 | DOI | MR | Zbl
[23] Xiao Z., Wei F., “Commuting traces and Lie isomorphisms on generalized matrix algebras”, Operators Matrices, 8 (2014), 821–847 | DOI | MR | Zbl