The prime radical of alternative rings and loops
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 1, pp. 145-166

Voir la notice de l'article provenant de la source Math-Net.Ru

A characterization of the prime radical of loops as the set of strongly Engel elements was given in our earlier paper. In this paper, some properties of the prime radical of loops are considered. Also a connection between the prime radical of the loop of units of an alternative ring and the prime radical of this ring is given.
@article{FPM_2015_20_1_a7,
     author = {A. V. Gribov},
     title = {The prime radical of alternative rings and loops},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {145--166},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a7/}
}
TY  - JOUR
AU  - A. V. Gribov
TI  - The prime radical of alternative rings and loops
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 145
EP  - 166
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a7/
LA  - ru
ID  - FPM_2015_20_1_a7
ER  - 
%0 Journal Article
%A A. V. Gribov
%T The prime radical of alternative rings and loops
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 145-166
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a7/
%G ru
%F FPM_2015_20_1_a7
A. V. Gribov. The prime radical of alternative rings and loops. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 1, pp. 145-166. http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a7/