Non-Abelian group codes over an arbitrary finite field
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 1, pp. 17-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that there exist non-Abelian group codes over an arbitrary finite field.
@article{FPM_2015_20_1_a2,
     author = {C. Garc{\'\i}a Pillado and S. Gonz\'alez and V. T. Markov and C. Mart{\'\i}nez},
     title = {Non-Abelian group codes over an arbitrary finite field},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {17--22},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a2/}
}
TY  - JOUR
AU  - C. García Pillado
AU  - S. González
AU  - V. T. Markov
AU  - C. Martínez
TI  - Non-Abelian group codes over an arbitrary finite field
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2015
SP  - 17
EP  - 22
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a2/
LA  - ru
ID  - FPM_2015_20_1_a2
ER  - 
%0 Journal Article
%A C. García Pillado
%A S. González
%A V. T. Markov
%A C. Martínez
%T Non-Abelian group codes over an arbitrary finite field
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2015
%P 17-22
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a2/
%G ru
%F FPM_2015_20_1_a2
C. García Pillado; S. González; V. T. Markov; C. Martínez. Non-Abelian group codes over an arbitrary finite field. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 1, pp. 17-22. http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a2/

[1] Berman S. D., “O teorii gruppovykh kodov”, Kibernetika, 3, 1967, 31–39 | Zbl

[2] Garsia-Pilyado K., Gonsales S., Markov V. T., Martines K., Nechaev A. A., “Kogda vse gruppovye kody nekommutativnoi gruppy abelevy (vychislitelnyi podkhod)?”, Fundament. i prikl. matem., 17:2 (2011/2012), 75–85 | MR

[3] Garsia Pilyado K., Gonsales S., Markov V. T., Martines K., Nechaev A. A., “Neabelevy gruppovye kody”, Uchënye zapiski Orlovsk. gos. un-ta, 6:2 (2012), 73–79

[4] Kouselo E., Gonsales S., Markov V., Nechaev A., “Gruppovye kody i ikh neassotsiativnye obobscheniya”, Diskret. mat., 16:1 (2004), 146–156 | DOI | MR | Zbl

[5] Markov V. T., “Abelevy i neabelevy gruppovye kody nad nekommutativnymi gruppami”, Algebra i teoriya chisel: sovremennye problemy i prilozheniya, Materialy XII Mezhdunarodnoi konferentsii, posvyaschënnoi 80-letiyu professora Viktora Nikolaevicha Latysheva (Tula, 21–25 aprelya 2014 g.), Izd-vo TGPU im. L. N. Tolstogo, Tula, 2014, 200–203

[6] Bernal J. J., del Río Á., Simón J. J., “An intrinsical description of group codes”, Designs, Codes and Cryptography, 51:3 (2009), 289–300 | DOI | MR | Zbl

[7] García Pillado C., González S., Markov V., Martínez C., Nechaev A., “Group codes which are not Abelian group codes”, Proc. of the Third Int. Castle Meeting on Coding Theory and Applications, 2011, 123–127

[8] García Pillado C., González S., Markov V. T., Martínez C., Nechaev A. A., “Group codes over non-Abelian groups”, J. Algebra Its Appl., 12:7 (2013), 1350037, 20 pp. | DOI | MR | Zbl

[9] http://www.gap-system.org/