On binary digit-position sequences over Galois rings, admitting an effect of reduction of period
Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 1, pp. 223-230
Voir la notice de l'article provenant de la source Math-Net.Ru
A class of binary digit-position sequences, obtained from the linear recurring sequence of maximal period over Galois rings of odd characteristics and admitting an effect of twofold reduction of period, has been found. A condition was found when sequences of some fixed linear recurring sequence of maximal period over Galois fields with such property are exhausted only by that class.
@article{FPM_2015_20_1_a11,
author = {S. A. Kuzmin},
title = {On binary digit-position sequences over {Galois} rings, admitting an effect of reduction of period},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {223--230},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a11/}
}
TY - JOUR AU - S. A. Kuzmin TI - On binary digit-position sequences over Galois rings, admitting an effect of reduction of period JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2015 SP - 223 EP - 230 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a11/ LA - ru ID - FPM_2015_20_1_a11 ER -
S. A. Kuzmin. On binary digit-position sequences over Galois rings, admitting an effect of reduction of period. Fundamentalʹnaâ i prikladnaâ matematika, Tome 20 (2015) no. 1, pp. 223-230. http://geodesic.mathdoc.fr/item/FPM_2015_20_1_a11/