The Wedderburn--Artin theorem for paragraded rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 6, pp. 125-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove the paragraded version of the Wedderburn–Artin theorem. Following the methods known from the abstract case, we first prove the density theorem and observe the matrix rings whose entries are from a paragraded ring. However, in order to arrive at the desired structure theorem, we introduce the notion of a Jacobson radical of a paragraded ring and prove some properties which are analogous to the abstract case. In the process, we study the faithful and irreducible paragraded modules over noncommutative paragraded rings and prove the paragraded version of the well known Schur's lemma.
@article{FPM_2014_19_6_a5,
     author = {E. Ili\'c-Georgijevi\'c and M. Vukovi\'c},
     title = {The {Wedderburn--Artin} theorem for paragraded rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {125--139},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a5/}
}
TY  - JOUR
AU  - E. Ilić-Georgijević
AU  - M. Vuković
TI  - The Wedderburn--Artin theorem for paragraded rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 125
EP  - 139
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a5/
LA  - ru
ID  - FPM_2014_19_6_a5
ER  - 
%0 Journal Article
%A E. Ilić-Georgijević
%A M. Vuković
%T The Wedderburn--Artin theorem for paragraded rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 125-139
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a5/
%G ru
%F FPM_2014_19_6_a5
E. Ilić-Georgijević; M. Vuković. The Wedderburn--Artin theorem for paragraded rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 6, pp. 125-139. http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a5/

[1] Vukovich M., Ilich-Georgievich E., “Paragraduirovannye koltsa i ikh idealy”, Fundament. i prikl. matem., 17:4 (2011/2012), 83–93 | MR

[2] Bourbaki N., Algèbre, Chap. II, Hermann, Paris, 1962 | Zbl

[3] Chadeyras M., “Essai d'une théorie noetherienne pour les anneaux commutatifs, dont la graduation est aussi générale que possible”, Suppl. Bull. Soc. Math. Fr. Mémoire., 22 (1970), 1–143 | MR

[4] Halberstadt E., Théorie artinienne homogène des anneaux gradués à grades non commutatifs réguliers, Thèse doct. sci. math., Arch. orig. Cent. Doc. C. N. R. S., no. 5962, Centre National de la Recherche Scientifique, Paris, 1971 | Zbl

[5] Herstein I. N., Noncommutative Rings, Carus Math. Monographs, Mathematical Association of America Textbooks, 15, The Mathematical Association of America, 2005 | MR

[6] Ilić-Georgijević E., “On the categories of paragraded groups and modules of type $\Delta$”, Sarajevo J. Math., 8:21 (2012), 193–202 | DOI | MR | Zbl

[7] Krasner M., “Hypergroupes moduliformes et extramoduliformes”, C. R. Acad. Sci. Paris, 219 (1944), 473–476 | MR | Zbl

[8] Krasner M., “Une généralisation de la notion de corps-corpoïde Un corpoïde remarquable de la théorie des corps valués”, C. R. Acad. Sci. Paris, 219 (1944), 345–347 | MR | Zbl

[9] Krasner M., “Théorie de la ramification dans les extensions finies des corps valués: Hypergroupe d'inertie et de ramification; théorie extrinsèque de la ramification”, C. R. Acad. Sci. Paris, 220 (1945), 28–30 | MR | Zbl

[10] Krasner M., “Quelques méthodes nouvelles dans la théorie des corps valués complets”, Algèbre et théorie des nombres, Colloque Int. du C. N. R. S., 24, C. N. R. S., Paris, 1950, 29–39 | MR | Zbl

[11] Krasner M., “Congruences multiplicatives. Squelettes et corpoïdes”, Séminaire Krasner, v. 1, Sécr. Math. Fac. Sc., Paris, 1953–1954, exp. 4, 39

[12] Krasner M., “Théorie élémentaire des corpoïdes commutatifs sans torsion”, Séminaire Krasner, v. 2, Sécr. Math. Fac. Sc., Paris, 1953–1954, exp. 5

[13] Krasner M., “Anneaux gradués généraux”, Colloque d'Algébre Rennes, 1980, 209–308 | MR | Zbl

[14] Krasner M., Vuković M., “Structures paragraduées (groupes, anneaux, modules). I”, Proc. Japan Acad. Ser. A, 62:9 (1986), 350–352 | DOI | MR | Zbl

[15] Krasner M., Vuković M., “Structures paragraduées (groupes, anneaux, modules). II”, Proc. Japan Acad. Ser. A, 62:10 (1986), 389–391 | DOI | MR | Zbl

[16] Krasner M., Vuković M., “Structures paragraduées (groupes, anneaux, modules). III”, Proc. Japan Acad. Ser. A, 63:1 (1987), 10–12 | DOI | MR | Zbl

[17] Krasner M., Vuković M., Structures paragraduées (groupes, anneaux, modules), Queen's Papers in Pure and Applied Mathematics, 77, Queen's University, Kingston, Ontario, Canada, 1987 | MR | Zbl

[18] Vuković M., Structures graduées et paragraduées, Prepublication de l'Institut Fourier No 536, Université de Grenoble I, 2001

[19] Vuković M., “About Krasner's and Vuković's paragraduations”, Int. Congress of Mathematicians (Hyderabad, India, 19–27 August 2010)

[20] Vuković M., Ilić-Georgijević E., Paragraded Structures, Book in preparation