On intersection of primary subgroups of odd order in finite almost simple groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 6, pp. 115-123
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the question of the determination of subgroups $A$ and $B$ such that $A\cap B^g\ne1$ for any $g\in G$ for a finite almost simple group $G$ and its primary subgroups $A$ and $B$ of odd order. We prove that there exist only four possibilities for the ordered pair $(A,B)$.
@article{FPM_2014_19_6_a4,
author = {V. I. Zenkov and Ya. N. Nuzhin},
title = {On intersection of primary subgroups of odd order in finite almost simple groups},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {115--123},
publisher = {mathdoc},
volume = {19},
number = {6},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a4/}
}
TY - JOUR AU - V. I. Zenkov AU - Ya. N. Nuzhin TI - On intersection of primary subgroups of odd order in finite almost simple groups JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2014 SP - 115 EP - 123 VL - 19 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a4/ LA - ru ID - FPM_2014_19_6_a4 ER -
V. I. Zenkov; Ya. N. Nuzhin. On intersection of primary subgroups of odd order in finite almost simple groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 6, pp. 115-123. http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a4/