@article{FPM_2014_19_6_a3,
author = {V. K. Zakharov and A. V. Mikhalev and T. V. Rodionov},
title = {Postclassical families of functions proper for descriptive and prescriptive spaces},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {77--113},
year = {2014},
volume = {19},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a3/}
}
TY - JOUR AU - V. K. Zakharov AU - A. V. Mikhalev AU - T. V. Rodionov TI - Postclassical families of functions proper for descriptive and prescriptive spaces JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2014 SP - 77 EP - 113 VL - 19 IS - 6 UR - http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a3/ LA - ru ID - FPM_2014_19_6_a3 ER -
%0 Journal Article %A V. K. Zakharov %A A. V. Mikhalev %A T. V. Rodionov %T Postclassical families of functions proper for descriptive and prescriptive spaces %J Fundamentalʹnaâ i prikladnaâ matematika %D 2014 %P 77-113 %V 19 %N 6 %U http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a3/ %G ru %F FPM_2014_19_6_a3
V. K. Zakharov; A. V. Mikhalev; T. V. Rodionov. Postclassical families of functions proper for descriptive and prescriptive spaces. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 6, pp. 77-113. http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a3/
[1] Zakharov V. K., “Funktsionalnaya kharakterizatsiya absolyuta, vektornye reshëtki funktsii so svoistvom Bera i kvazinormalnykh funktsii i moduli chastnykh nepreryvnykh funktsii”, Tr. MMO, 45, no. 1, 1982, 68–104 | MR | Zbl
[2] Zakharov V. K., “Svyazi mezhdu rasshireniem Lebega i rasshireniem Borelya pervogo klassa i mezhdu sootvetstvuyuschimi im proobrazami”, Izv. AN SSSR. Ser. matem., 54:5 (1990), 928–956 | MR | Zbl
[3] Zakharov V. K., “Rasshireniya koltsa nepreryvnykh funktsii, porozhdënnye regulyarnym, schetno-delimym i polnym koltsami chastnykh, i sootvetstvuyuschie im proobrazy”, Izv. RAN. Ser. matem., 59:4 (1995), 15–60 | MR | Zbl
[4] Zakharov V. K., “Svyazi mezhdu rasshireniem Rimana i klassicheskim koltsom chastnykh i mezhdu proobrazom Semadeni i sekventsialnym absolyutom”, Tr. MMO, 57, 1996, 239–262 | MR | Zbl
[5] Zakharov V. K., “Novye klassy funktsii, svyazannye s obschimi semeistvami mnozhestv”, Dokl. RAN, 407:2 (2006), 167–171 | MR | Zbl
[6] Zakharov V. K., “Teoremy Khausdorfa ob izmerimykh funktsiyakh i novyi klass ravnomernykh funktsii”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 63:1 (2008), 3–8 | MR | Zbl
[7] Zakharov V. K., Mikhalëv A. V., “Integralnoe predstavlenie dlya radonovskikh mer na proizvolnom khausdorfovom prostranstve”, Fundament. i prikl. matem., 3:4 (1997), 1135–1172 | MR | Zbl
[8] Zakharov V. K., Mikhalëv A. V., “Problema obschego radonovskogo predstavleniya dlya proizvolnogo khausdorfova prostranstva”, Izv. RAN. Ser. matem., 63:5 (1999), 37–82 | DOI | MR | Zbl
[9] Zakharov V. K., Mikhalëv A. V., “Svyaz mezhdu integralnymi radonovskimi predstavleniyami dlya lokalno kompaktnogo i khausdorfova prostranstv”, Fundament. i prikl. matem., 7:1 (2001), 33–46 | MR | Zbl
[10] Zakharov V. K., Mikhalëv A. V., “Problema obschego radonovskogo predstavleniya dlya proizvolnogo khausdorfova prostranstva. II”, Izv. RAN. Ser. matem., 66:6 (2002), 3–18 | DOI | MR | Zbl
[11] Zakharov V. K., Mikhalëv A. V., Rodionov T. V., “Problema Rissa–Radona–Freshe kharakterizatsii integralov”, UMN, 65:4 (2010), 153–178 | DOI | MR | Zbl
[12] Zakharov V. K., Mikhalëv A. V., Rodionov T. V., “Opisanie radonovskikh integralov kak lineinykh funktsionalov”, Fundament. i prikl. matem., 16:8 (2010), 87–161 | MR
[13] Zakharov V. K., Mikhalëv A. V., Seredinskii A. A., “Kharakterizatsiya prostranstva funktsii, integriruemykh po Rimanu, posredstvom sechenii prostranstva nepreryvnykh funktsii. II”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 63:5 (2008), 11–20 | MR | Zbl
[14] Zakharov V. K., Rodionov T. V., “Klass ravnomernykh funktsii i ego sootnoshenie s klassom izmerimykh funktsii”, Matem. zametki, 84:6 (2008), 809–824 | DOI | MR | Zbl
[15] Zakharov V. K., Rodionov T. V., “Estestvennost klassa izmerimykh funktsii v smysle Lebega–Borelya–Khausdorfa”, Matem. zametki, 95:4 (2014), 554–563 | DOI | MR | Zbl
[16] Zakharov V. K., Seredinskii A. A., “Novaya kharakterizatsiya funktsii, integriruemykh po Rimanu”, Fundament. i prikl. mat., 10:3 (2004), 73–83 | MR | Zbl
[17] Khausdorf F., Teoriya mnozhestv, URSS, M., 2004
[18] Baire R., “Sur les fonctions de variables réelles”, Ann. Mat. Pura Appl. Ser. IIIa, 3 (1899), 1–122 | DOI
[19] Baire R., Leçons sur les fonctions discontinues, Gauthier-Villars, Paris, 1905 | Zbl
[20] Borel E., Leçons sur la théorie des fonctions, Gauthier-Villars, Paris, 1898
[21] Borel E., Leçons sur les fonctions de variables réelles, Gauthier-Villars, Paris, 1905 | Zbl
[22] Fine N. T., Gillman l., Lambek J., Rings of Quotients of Rings of Functions, McGill Univ. Press, Montreal, 1965 | MR
[23] Hausdorff F., “Über halbstetige Funktionen und deren Verallgemeinerung”, Math. Z., 4 (1915), 292–309 | MR
[24] Lebesgue H., “Integral, longeur, aire”, Ann. Math. (3), 7 (1902), 231–359 | Zbl
[25] Lebesgue H., “Sur les séries triginométriques”, Ann. Sci. École Norm. Sup. (3), 20 (1903), 453–485 | MR | Zbl
[26] Lebesgue H., Leçons sur l'integration et la recherche des fonctions primitives, Gauthier-Villars, Paris, 1904
[27] Regoli G., “Some characterization of sets of measurable functions”, Am. Math. Month., 84:6 (1977), 455–458 | DOI | MR | Zbl
[28] Semadeni Z., Banach Spaces of Continuous Functions, Mon. Mat., 55, PWA, Warszawa, 1971 | MR
[29] Sierpiński W., “Sur les fonctions développables en séries absolument convergentes de fonctions continues”, Fund. Math., 2 (1921), 15–27 | Zbl
[30] Stone M. N., “Applications of the theory of Boolean rings to general topology”, Trans. Am. Math. Soc., 41 (1937), 375–481 | DOI | MR | Zbl
[31] Young W. H., “On upper and lower integration”, Proc. London Math. Soc. Ser. 2, 2 (1905), 52–66 | DOI | MR
[32] Young W. H., “A new method in the theory of integration”, Proc. London Math. Soc. Ser. 2, 9 (1911), 15–50 | DOI | MR
[33] Zakharov V. K., “Alexandrovian cover and Sierpińskian extension”, Stud. Sci. Math. Hungar., 24:2–3 (1989), 93–117 | MR | Zbl