Local finiteness of algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 6, pp. 25-75

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper represents a series of comments to the K. A. Zhevlakov and I. P. Shestakov theorem on the existence of a locally finite in the sense of Shirshov over an ideal of the ground ring radical on the class of algebras that are algebraic over this ideal and belong to some sufficiently good homogeneous variety. It is shown in detail how the given theorem includes Plotkin's and Kuz'min's theorems on the existence of a locally finite radical on the classes of algebraic Lie and Mal'tsev algebras. There is adduced its generalization to locally finite extensions of ideally algebraic Lie and alternative algebras.
@article{FPM_2014_19_6_a2,
     author = {A. Yu. Golubkov},
     title = {Local finiteness of algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {25--75},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a2/}
}
TY  - JOUR
AU  - A. Yu. Golubkov
TI  - Local finiteness of algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 25
EP  - 75
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a2/
LA  - ru
ID  - FPM_2014_19_6_a2
ER  - 
%0 Journal Article
%A A. Yu. Golubkov
%T Local finiteness of algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 25-75
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a2/
%G ru
%F FPM_2014_19_6_a2
A. Yu. Golubkov. Local finiteness of algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 6, pp. 25-75. http://geodesic.mathdoc.fr/item/FPM_2014_19_6_a2/