Subdifferentials for the difference of two convex functions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 5, pp. 167-184.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that for some classes of functions all epiderivatives and subdifferentials of the Clarke, Michel–Penot, and other types coincide. Several rules of calculation of epiderivatives and subdifferentials for the difference of two convex functions are obtained. Some examples are considered.
@article{FPM_2014_19_5_a7,
     author = {E. S. Polovinkin},
     title = {Subdifferentials for the difference of two convex functions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {167--184},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a7/}
}
TY  - JOUR
AU  - E. S. Polovinkin
TI  - Subdifferentials for the difference of two convex functions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 167
EP  - 184
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a7/
LA  - ru
ID  - FPM_2014_19_5_a7
ER  - 
%0 Journal Article
%A E. S. Polovinkin
%T Subdifferentials for the difference of two convex functions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 167-184
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a7/
%G ru
%F FPM_2014_19_5_a7
E. S. Polovinkin. Subdifferentials for the difference of two convex functions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 5, pp. 167-184. http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a7/

[1] Demyanov V. F., Rubinov A. M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1990 | MR

[2] Makarov B. M., Podkorytov A. N., Lektsii po veschestvennomu analizu, BKhV-Peterburg, SPb., 2011

[3] Polovinkin E. S., Teoriya mnogoznachnykh otobrazhenii, Izd-vo MFTI, M., 1983

[4] Polovinkin E. S., “O neobkhodimykh usloviyakh optimalnosti reshenii differentsialnykh vklyuchenii na otrezke”, Sovremennaya matematika v fiziko-tekhnicheskikh zadachakh, Izd-vo MFTI, M., 1986, 87–94 | MR

[5] Polovinkin E. S., “O nekotorykh svoistvakh proizvodnykh mnogoznachnykh otobrazhenii”, Tr. MFTI, 4:4 (2012), 141–154

[6] Polovinkin E. S., “Differentsialnye vklyucheniya s izmerimo-psevdolipshitsevoi pravoi chastyu”, Tr. MIAN, 283, 2013, 121–141 | Zbl

[7] Polovinkin E. S., Balashov M. V., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2007

[8] Pshenichnyi B. N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980 | MR

[9] Aubin J.-P., “Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions”, Advances in Mathematics. Supplementary Studies, 7a, Academic Press, 1981, 160–232 | MR

[10] Aubin J.-P., Frankovska H., Set-Valued Analysis, Birkhäuser, Basel, 1990 | MR | Zbl

[11] Clarke F. H., “Generalized gradients and applications”, J. Trans. Am. Math. Soc., 205 (1975), 247–262 | DOI | MR | Zbl

[12] Clarke F. H., Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, 1983 | MR | Zbl

[13] Michel P., Penot J.-P., “Calcul sous-différentiel pour les fonctions lipschitziennes et non-lipschitziennes”, C. R. Acad. Sci. Paris Ser. I, 298 (1984), 269–272 | MR | Zbl