The best approximation of a~set whose elements are known approximately
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 5, pp. 127-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with the problem of the best (in a precisely defined sense) approximation with given accuracy of periodic functions and functions on the real line from, respectively, a finite tuple of noisy Fourier coefficients or noisy Fourier transform on an arbitrary set of finite measure.
@article{FPM_2014_19_5_a5,
     author = {G. G. Magaril-Il'yaev and K. Yu. Osipenko and E. O. Sivkova},
     title = {The best approximation of a~set whose elements are known approximately},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {127--141},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a5/}
}
TY  - JOUR
AU  - G. G. Magaril-Il'yaev
AU  - K. Yu. Osipenko
AU  - E. O. Sivkova
TI  - The best approximation of a~set whose elements are known approximately
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 127
EP  - 141
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a5/
LA  - ru
ID  - FPM_2014_19_5_a5
ER  - 
%0 Journal Article
%A G. G. Magaril-Il'yaev
%A K. Yu. Osipenko
%A E. O. Sivkova
%T The best approximation of a~set whose elements are known approximately
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 127-141
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a5/
%G ru
%F FPM_2014_19_5_a5
G. G. Magaril-Il'yaev; K. Yu. Osipenko; E. O. Sivkova. The best approximation of a~set whose elements are known approximately. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 5, pp. 127-141. http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a5/

[1] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon$-entropiya i $\varepsilon$-ëmkost mnozhestv v funktsionalnykh prostranstvakh”, UMN, 14:2 (1959), 3–86 | MR | Zbl

[2] Magaril-Ilyaev G. G., Osipenko K. Yu., “Optimalnoe vosstanovlenie funktsii i ikh proizvodnykh po priblizhënnoi informatsii o spektre i neravenstva dlya proizvodnykh”, Funkts. analiz i ego pril., 37:3 (2003), 51–64 | DOI | MR | Zbl

[3] Magaril-Ilyaev G. G., Osipenko K. Yu., “Optimalnoe vosstanovlenie znachenii funktsii i ikh proizvodnykh po netochno zadannomu preobrazovaniyu Fure”, Matem. sb., 195:10 (2004), 67–82 | DOI | MR | Zbl

[4] Magaril-Ilyaev G. G., Osipenko K. Yu., “O vosstanovlenii operatorov svërtochnogo tipa po netochnoi informatsii”, Tr. MIAN, 269, 2010, 181–192 | MR | Zbl

[5] Magaril-Ilyaev G. G., Osipenko K. Yu., “Ob optimalnom garmonicheskom sinteze po netochno zadannomu spektru”, Funkts. analiz i ego pril., 44:3 (2010), 76–79 | DOI | MR | Zbl

[6] Magaril-Ilyaev G. G., Osipenko K. Yu., “Kak nailuchshim obrazom vosstanovit funktsiyu po netochno zadannomu spektru?”, Matem. zametki, 92:1 (2012), 59–67 | DOI | MR | Zbl

[7] Magaril-Ilyaev G. G., Sivkova E. O., “Nailuchshee vosstanovlenie operatora Laplasa funktsii po eë netochno zadannomu spektru”, Matem. sb., 203:4 (2012), 119–130 | DOI | MR | Zbl