The best approximation of a~set whose elements are known approximately
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 5, pp. 127-141
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is concerned with the problem of the best (in a precisely defined sense) approximation with given accuracy of periodic functions and functions on the real line from, respectively, a finite tuple of noisy Fourier coefficients or noisy Fourier transform on an arbitrary set of finite measure.
@article{FPM_2014_19_5_a5,
author = {G. G. Magaril-Il'yaev and K. Yu. Osipenko and E. O. Sivkova},
title = {The best approximation of a~set whose elements are known approximately},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {127--141},
publisher = {mathdoc},
volume = {19},
number = {5},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a5/}
}
TY - JOUR AU - G. G. Magaril-Il'yaev AU - K. Yu. Osipenko AU - E. O. Sivkova TI - The best approximation of a~set whose elements are known approximately JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2014 SP - 127 EP - 141 VL - 19 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a5/ LA - ru ID - FPM_2014_19_5_a5 ER -
%0 Journal Article %A G. G. Magaril-Il'yaev %A K. Yu. Osipenko %A E. O. Sivkova %T The best approximation of a~set whose elements are known approximately %J Fundamentalʹnaâ i prikladnaâ matematika %D 2014 %P 127-141 %V 19 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a5/ %G ru %F FPM_2014_19_5_a5
G. G. Magaril-Il'yaev; K. Yu. Osipenko; E. O. Sivkova. The best approximation of a~set whose elements are known approximately. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 5, pp. 127-141. http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a5/