On the proof of Pontryagin's maximum principle by means of needle variations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 5, pp. 49-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a proof of the maximum principle for the general Pontryagin type optimal control problem, based on packets of needle variations. The optimal control problem is first reduced to a family of smooth finite-dimensional problems, the arguments of which are the widths of the needles in each packet, then, for each of these problems, the standard Lagrange multipliers rule is applied, and finally, the obtained family of necessary conditions is “compressed” in one universal optimality condition by using the concept of centered family of compacta.
@article{FPM_2014_19_5_a2,
     author = {A. V. Dmitruk and N. P. Osmolovskii},
     title = {On the proof of {Pontryagin's} maximum principle by means of needle variations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {49--73},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a2/}
}
TY  - JOUR
AU  - A. V. Dmitruk
AU  - N. P. Osmolovskii
TI  - On the proof of Pontryagin's maximum principle by means of needle variations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 49
EP  - 73
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a2/
LA  - ru
ID  - FPM_2014_19_5_a2
ER  - 
%0 Journal Article
%A A. V. Dmitruk
%A N. P. Osmolovskii
%T On the proof of Pontryagin's maximum principle by means of needle variations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 49-73
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a2/
%G ru
%F FPM_2014_19_5_a2
A. V. Dmitruk; N. P. Osmolovskii. On the proof of Pontryagin's maximum principle by means of needle variations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 5, pp. 49-73. http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a2/

[1] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR

[2] Boltyanskii V. G., Matematicheskie metody optimalnogo upravleniya, Nauka, M., 1969 | MR

[3] Gamkrelidze R. V., “Optimalnye skolzyaschie rezhimy”, DAN SSSR, 143:6 (1962), 1243–1245 | MR | Zbl

[4] Girsanov I. V., Lektsii po teorii ekstremalnykh zadach, MGU, M., 1970

[5] Dmitruk A. V., “Printsip maksimuma dlya obschei zadachi optimalnogo upravleniya s fazovymi i regulyarnymi smeshannymi ogranicheniyami”, Optimalnost upravlyaemykh dinamicheskikh sistem, 14, Nauka, VNIISI, M., 1990, 26–42

[6] Dubovitskii A. Ya., Milyutin A. A., “Zadachi na ekstremum pri nalichii ogranichenii”, Zh. vychisl. matem. i matem. fiz., 5:3 (1965), 395–453 | MR | Zbl

[7] Dubovitskii A. Ya., Milyutin A. A., “Translyatsii uravnenii Eilera”, Zh. vychisl. matem. i matem. fiz., 9:6 (1969), 1263–1284 | MR | Zbl

[8] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR

[9] Magaril-Ilyaev G. G., “Printsip maksimuma Pontryagina. Formulirovka i dokazatelstvo”, Dokl. RAN, 442:1 (2012), 20–23 | MR | Zbl

[10] Malgranzh B., Idealy differentsiruemykh funktsii, Mir, M., 1968

[11] Matveev A. S., Yakubovich V. A., Abstraktnaya teoriya optimalnogo upravleniya, Izd-vo S.-Peterburg. un-ta, SPb., 1994 | MR

[12] Milyutin A. A., “Obschie skhemy polucheniya neobkhodimykh uslovii ekstremuma i zadachi optimalnogo upravleniya”, UMN, 25:5(155) (1970), 110–116 | MR | Zbl

[13] Milyutin A. A., Dmitruk A. V., Osmolovskii N. P., Printsip maksimuma v optimalnom upravlenii, Izd-vo mekhmata MGU, M., 2004

[14] N. P. Osmolovskii, V. M. Tikhomirov (red.), Optimalnoe upravlenie, MTsNMO, M., 2008

[15] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969

[16] Carlson D. A., “An elementary proof of the maximum principle for optimal control problems governed by a Volterra integral equation”, J. Optim. Theory Appl., 54:1 (1987), 43–61 | DOI | MR

[17] Dmitruk A. V., “On the development of Pontryagin's Maximum principle in the works of A. Ya. Dubovitskii and A. A. Milyutin”, Control Cybernet., 38:4a (2009), 923–958 | MR

[18] Korytowski A., “A simple proof of the maximum principle with endpoint constraints”, Control Cybernet., 43:1 (2014), 5–14 | MR

[19] Lichtenstein L., “Eine elementare Bemerkung zur reellen Analysis”, Math. Z., 30:1 (1929), 794–795 | DOI | MR | Zbl

[20] Makowsky K., Neustadt L. W., “Maximum principle for problems with mixed constraints”, SIAM J. Control Optim., 12:2 (1974), 184–228 | DOI | MR

[21] Michel P., “Une demonstration elémentaire du principe du maximum de Pontryagin”, Bull. Math. Econom., 14 (1977), 9–23