Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2014_19_5_a2, author = {A. V. Dmitruk and N. P. Osmolovskii}, title = {On the proof of {Pontryagin's} maximum principle by means of needle variations}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {49--73}, publisher = {mathdoc}, volume = {19}, number = {5}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a2/} }
TY - JOUR AU - A. V. Dmitruk AU - N. P. Osmolovskii TI - On the proof of Pontryagin's maximum principle by means of needle variations JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2014 SP - 49 EP - 73 VL - 19 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a2/ LA - ru ID - FPM_2014_19_5_a2 ER -
A. V. Dmitruk; N. P. Osmolovskii. On the proof of Pontryagin's maximum principle by means of needle variations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 5, pp. 49-73. http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a2/
[1] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR
[2] Boltyanskii V. G., Matematicheskie metody optimalnogo upravleniya, Nauka, M., 1969 | MR
[3] Gamkrelidze R. V., “Optimalnye skolzyaschie rezhimy”, DAN SSSR, 143:6 (1962), 1243–1245 | MR | Zbl
[4] Girsanov I. V., Lektsii po teorii ekstremalnykh zadach, MGU, M., 1970
[5] Dmitruk A. V., “Printsip maksimuma dlya obschei zadachi optimalnogo upravleniya s fazovymi i regulyarnymi smeshannymi ogranicheniyami”, Optimalnost upravlyaemykh dinamicheskikh sistem, 14, Nauka, VNIISI, M., 1990, 26–42
[6] Dubovitskii A. Ya., Milyutin A. A., “Zadachi na ekstremum pri nalichii ogranichenii”, Zh. vychisl. matem. i matem. fiz., 5:3 (1965), 395–453 | MR | Zbl
[7] Dubovitskii A. Ya., Milyutin A. A., “Translyatsii uravnenii Eilera”, Zh. vychisl. matem. i matem. fiz., 9:6 (1969), 1263–1284 | MR | Zbl
[8] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR
[9] Magaril-Ilyaev G. G., “Printsip maksimuma Pontryagina. Formulirovka i dokazatelstvo”, Dokl. RAN, 442:1 (2012), 20–23 | MR | Zbl
[10] Malgranzh B., Idealy differentsiruemykh funktsii, Mir, M., 1968
[11] Matveev A. S., Yakubovich V. A., Abstraktnaya teoriya optimalnogo upravleniya, Izd-vo S.-Peterburg. un-ta, SPb., 1994 | MR
[12] Milyutin A. A., “Obschie skhemy polucheniya neobkhodimykh uslovii ekstremuma i zadachi optimalnogo upravleniya”, UMN, 25:5(155) (1970), 110–116 | MR | Zbl
[13] Milyutin A. A., Dmitruk A. V., Osmolovskii N. P., Printsip maksimuma v optimalnom upravlenii, Izd-vo mekhmata MGU, M., 2004
[14] N. P. Osmolovskii, V. M. Tikhomirov (red.), Optimalnoe upravlenie, MTsNMO, M., 2008
[15] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969
[16] Carlson D. A., “An elementary proof of the maximum principle for optimal control problems governed by a Volterra integral equation”, J. Optim. Theory Appl., 54:1 (1987), 43–61 | DOI | MR
[17] Dmitruk A. V., “On the development of Pontryagin's Maximum principle in the works of A. Ya. Dubovitskii and A. A. Milyutin”, Control Cybernet., 38:4a (2009), 923–958 | MR
[18] Korytowski A., “A simple proof of the maximum principle with endpoint constraints”, Control Cybernet., 43:1 (2014), 5–14 | MR
[19] Lichtenstein L., “Eine elementare Bemerkung zur reellen Analysis”, Math. Z., 30:1 (1929), 794–795 | DOI | MR | Zbl
[20] Makowsky K., Neustadt L. W., “Maximum principle for problems with mixed constraints”, SIAM J. Control Optim., 12:2 (1974), 184–228 | DOI | MR
[21] Michel P., “Une demonstration elémentaire du principe du maximum de Pontryagin”, Bull. Math. Econom., 14 (1977), 9–23