Associate norms and optimal embeddings for a~class of two-weight integral quasi-norms
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 5, pp. 3-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain formulas for the generalized functional norm associated with the two-weight integral quasi-norm. We describe a minimal generalized Banach function space containing a given quasi-Banach space defined by the two-weight integral quasi-norm.
@article{FPM_2014_19_5_a0,
     author = {E. G. Bakhtigareeva and M. L. Goldman},
     title = {Associate norms and optimal embeddings for a~class of two-weight integral quasi-norms},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--33},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a0/}
}
TY  - JOUR
AU  - E. G. Bakhtigareeva
AU  - M. L. Goldman
TI  - Associate norms and optimal embeddings for a~class of two-weight integral quasi-norms
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 3
EP  - 33
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a0/
LA  - ru
ID  - FPM_2014_19_5_a0
ER  - 
%0 Journal Article
%A E. G. Bakhtigareeva
%A M. L. Goldman
%T Associate norms and optimal embeddings for a~class of two-weight integral quasi-norms
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 3-33
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a0/
%G ru
%F FPM_2014_19_5_a0
E. G. Bakhtigareeva; M. L. Goldman. Associate norms and optimal embeddings for a~class of two-weight integral quasi-norms. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 5, pp. 3-33. http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a0/

[1] Bakhtigareeva E. G., Goldman M. L., Zabreiko P. P., “Optimalnoe vosstanovlenie obobschënnogo banakhova funktsionalnogo prostranstva po konusu neotritsatelnykh funktsii”, Vestn. TGU, 19:2 (2014), 316–330

[2] Goldman M. L., “Ob optimalnykh vlozheniyakh obobschënnykh potentsialov Besselya i Rissa”, Tr. MIAN, 269, 2010, 91–111 | MR | Zbl

[3] Goldman M. L., Zabreiko P. P., “Optimalnoe vosstanovlenie banakhova funktsionalnogo prostranstva po konusu neotritsatelnykh funktsii”, Tr. MIAN, 284, 2014, 142–148 | Zbl

[4] Zabreiko P. P., “Nelineinye integralnye operatory”, Trudy seminara po funktsionalnomu analizu, 8, Voronezh, 1966, 3–152 | MR

[5] Krein S. G., Petunin Yu. I., Semënov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR

[6] Bennett C., Sharpley R., Interpolation of Operators, Academic Press, New York, 1988 | MR | Zbl

[7] Goldman M. L., “Rearrangement invariant envelopes of generalized Besov, Sobolev, and Calderon spaces”, Contemp. Math., 424 (2007), 53–81 | DOI | MR | Zbl

[8] Goldman M. L., Haroske D., “Estimates for continuity envelopes and approximation numbers of Bessel potentials”, J. Approx. Theory, 172 (2013), 58–85 | DOI | MR | Zbl