@article{FPM_2014_19_5_a0,
author = {E. G. Bakhtigareeva and M. L. Goldman},
title = {Associate norms and optimal embeddings for a~class of two-weight integral quasi-norms},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {3--33},
year = {2014},
volume = {19},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a0/}
}
TY - JOUR AU - E. G. Bakhtigareeva AU - M. L. Goldman TI - Associate norms and optimal embeddings for a class of two-weight integral quasi-norms JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2014 SP - 3 EP - 33 VL - 19 IS - 5 UR - http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a0/ LA - ru ID - FPM_2014_19_5_a0 ER -
E. G. Bakhtigareeva; M. L. Goldman. Associate norms and optimal embeddings for a class of two-weight integral quasi-norms. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 5, pp. 3-33. http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a0/
[1] Bakhtigareeva E. G., Goldman M. L., Zabreiko P. P., “Optimalnoe vosstanovlenie obobschënnogo banakhova funktsionalnogo prostranstva po konusu neotritsatelnykh funktsii”, Vestn. TGU, 19:2 (2014), 316–330
[2] Goldman M. L., “Ob optimalnykh vlozheniyakh obobschënnykh potentsialov Besselya i Rissa”, Tr. MIAN, 269, 2010, 91–111 | MR | Zbl
[3] Goldman M. L., Zabreiko P. P., “Optimalnoe vosstanovlenie banakhova funktsionalnogo prostranstva po konusu neotritsatelnykh funktsii”, Tr. MIAN, 284, 2014, 142–148 | Zbl
[4] Zabreiko P. P., “Nelineinye integralnye operatory”, Trudy seminara po funktsionalnomu analizu, 8, Voronezh, 1966, 3–152 | MR
[5] Krein S. G., Petunin Yu. I., Semënov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR
[6] Bennett C., Sharpley R., Interpolation of Operators, Academic Press, New York, 1988 | MR | Zbl
[7] Goldman M. L., “Rearrangement invariant envelopes of generalized Besov, Sobolev, and Calderon spaces”, Contemp. Math., 424 (2007), 53–81 | DOI | MR | Zbl
[8] Goldman M. L., Haroske D., “Estimates for continuity envelopes and approximation numbers of Bessel potentials”, J. Approx. Theory, 172 (2013), 58–85 | DOI | MR | Zbl