Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2014_19_4_a6, author = {A. V. Fursikov and L. S. Shatina}, title = {On an estimate connected with the stabilization of normal parabolic equation by start control}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {197--230}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_4_a6/} }
TY - JOUR AU - A. V. Fursikov AU - L. S. Shatina TI - On an estimate connected with the stabilization of normal parabolic equation by start control JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2014 SP - 197 EP - 230 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2014_19_4_a6/ LA - ru ID - FPM_2014_19_4_a6 ER -
%0 Journal Article %A A. V. Fursikov %A L. S. Shatina %T On an estimate connected with the stabilization of normal parabolic equation by start control %J Fundamentalʹnaâ i prikladnaâ matematika %D 2014 %P 197-230 %V 19 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2014_19_4_a6/ %G ru %F FPM_2014_19_4_a6
A. V. Fursikov; L. S. Shatina. On an estimate connected with the stabilization of normal parabolic equation by start control. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 4, pp. 197-230. http://geodesic.mathdoc.fr/item/FPM_2014_19_4_a6/
[1] Fursikov A. V., Emanuilov Yu. S., “Tochnaya upravlyaemost uravnenii Nave–Stoksa i Bussineska”, Uspekhi mat. nauk, 54:3(227) (1999), 93–146 | DOI | MR | Zbl
[2] Yudovich V. I., “Nestatsionarnye techeniya idealnoi neszhimaemoi zhidkosti”, ZhVM i MF, 3:6 (1963), 1032–1066 | MR | Zbl
[3] Barbu V., Lasiecka I., Triggiani R., “Abstract setting of tangential boundary stabilization of Navier–Stokes equations by high-and low-gain feedback controllers”, Nonlinear Analysis, 64:12 (2006), 2704–2746 | DOI | MR | Zbl
[4] Coron J. M., “On null asymptotic stabilization of the two-dimensional incompressible Euler equations in a simply connected domains”, SIAM J. Control Optim., 37:6 (1999), 1874–1896 | DOI | MR | Zbl
[5] Coron J. M., Control and Nonlinearity, Math. Surv. Monographs, 136, Amer. Math. Soc., Providence, 2007 | MR | Zbl
[6] Fursikov A. V., “Stabilization for the 3D Navier-Stokes system by feedback boundary control”, Discrete Contin. Dynam. Syst., 10:1–2 (2004), 289–314 | MR | Zbl
[7] Fursikov A. V., “The simplest semilinear parabolic equation of normal type”, Math. Control Related Fields, 2:2 (2012), 141–170 | DOI | MR | Zbl
[8] Fursikov A. V., “On the normal semilinear parabolic equations corresponding to 3D Navier–Stokes system”, System Modeling and Optimization, 25th IFIP TC 7 Conf., CSMO 2011 (Berlin, Germany, September 12–16, 2011), Revised Selected Papers, IFIP Adv. Inform. Commun. Tech., 391, eds. D. Hömberg, F. Tröltzsch, Springer, Berlin, 2013, 338–347 | DOI | Zbl
[9] Fursikov A. V., “On one semilinear parabolic equation of normal type”, Mathematics and Life Sciences, De Gruyter Ser. Math. Life Sci., 1, De Gruyter, Berlin, 2013, 147–160 | MR
[10] Fursikov A. V., “On parabolic system of normal type corresponding to 3D Helmholtz system”, Amer. Math. Soc. Transl., 232 (2014), 99–118 | MR | Zbl
[11] Fursikov A. V., “Stabilization of the simplest normal parabolic equation”, Commun. Pure Appl. Analysis, 13:5 (2014), 1815–1854 | DOI | MR | Zbl
[12] Fursikov A. V., Gorshkov A. V., “Certain questions of feedback stabilization for Navier–Stokes equations”, Evolution Equations Control Theory, 1:1 (2012), 109–140 | DOI | MR | Zbl
[13] Fursikov A. V., Kornev A. A., “Feedback stabilization for Navier-Stokes equations: theory and calculations”, Mathematical Aspects of Fluid Mechanics, LMS Lect. Notes Ser., 402, Cambridge Univ. Press, Cambridge, 2012, 130–172 | MR | Zbl
[14] Krstic M., “On global stabilization of Burgers' equation by boundary control”, Systems Control Lett., 37 (1999), 123–141 | DOI | MR | Zbl
[15] Raymond J.-P., “Feedback boundary stabilization of the three-dimensional incompressible Navier–Stokes equations”, J. Math. Pures Appl., 87:6 (2007), 627–669 | DOI | MR | Zbl
[16] Tucsnk M., Weiss G., Observation and Control for Operator Semigroups, Birkhäuser, Berlin, 2009 | MR