Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2014_19_4_a1, author = {A. R. Alimov and I. G. Tsar'kov}, title = {Connectedness and other geometric properties of suns and {Chebyshev} sets}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {21--91}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_4_a1/} }
TY - JOUR AU - A. R. Alimov AU - I. G. Tsar'kov TI - Connectedness and other geometric properties of suns and Chebyshev sets JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2014 SP - 21 EP - 91 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2014_19_4_a1/ LA - ru ID - FPM_2014_19_4_a1 ER -
A. R. Alimov; I. G. Tsar'kov. Connectedness and other geometric properties of suns and Chebyshev sets. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 4, pp. 21-91. http://geodesic.mathdoc.fr/item/FPM_2014_19_4_a1/
[1] Alimov A. R., “Chebyshëvskie kompakty na ploskosti”, Tr. MIAN, 219, 1997, 8–26 | MR | Zbl
[2] Alimov A. R., “Vsyakoe li chebyshëvskoe mnozhestvo vypuklo?”, Matem. prosveschenie. Ser. 3, 2, 1998, 155–172
[3] Alimov A. R., “Geometricheskaya kharakterizatsiya strogikh solnts v $\ell^\infty(n)$”, Matem. zametki, 70:1 (2001), 3–11 | DOI | MR | Zbl
[4] Alimov A. R., “O strukture dopolneniya k chebyshëvskim mnozhestvam”, Funkts. analiz i ego pril., 35:3 (2001), 19–27 | DOI | MR | Zbl
[5] Alimov A. R., “Vypuklost chebyshëvskikh mnozhestv, soderzhaschikhsya v podprostranstve”, Matem. zametki, 78:1 (2005), 3–15 | DOI | MR | Zbl
[6] Alimov A. R., “Geometricheskoe stroenie chebyshëvskikh mnozhestv v $\ell^\infty(n)$”, Funkts. analiz i ego pril., 39:1 (2005), 1–10 | DOI | MR | Zbl
[7] Alimov A. R., “Svyaznost solnts v prostranstve $c_0$”, Izv. RAN. Ser. matem., 69:4 (2005), 3–18 | DOI | MR | Zbl
[8] Alimov A. R., “Monotonnaya lineinaya svyaznost chebyshëvskikh mnozhestv v prostranstve $C(Q)$”, Matem. sb., 197:9 (2006), 3–18 | DOI | MR | Zbl
[9] Alimov A. R., “Sokhranenie approksimativnykh svoistv chebyshëvskikh mnozhestv v $\ell^\infty(n)$ pri peresechenii s podmnozhestvami $\mathbb R^n$”, Izv. RAN. Ser. matem., 70:5 (2006), 3–12 | DOI | MR | Zbl
[10] Alimov A. R., “Sokhranenie approksimativnykh svoistv chebyshëvskikh mnozhestv i solnts na ploskosti”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2008, no. 4, 46–49 | MR | Zbl
[11] Alimov A. R., “Monotonno svyaznoe chebyshëvskoe mnozhestvo yavlyaetsya solntsem”, Matem. zametki, 91:2 (2012), 305–307 | DOI | MR | Zbl
[12] Alimov A. R., “Lokalnaya solnechnost solnts v lineinykh normirovannykh prostranstvakh”, Fundament. i prikl. matem., 17:7 (2011/2012), 3–14 | MR
[13] Alimov A. R., “Ogranichennaya strogaya solnechnost strogikh solnts v prostranstve $C(Q)$”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 67:6 (2012), 16–19 | MR
[14] Alimov A. R., “Monotonnaya lineinaya svyaznost i solnechnost svyaznykh po Mengeru mnozhestv v banakhovykh prostranstvakh”, Izv. RAN. Ser. matem., 78:4 (2014), 3–18 | DOI | MR | Zbl
[15] Alimov A. R., Protasov V. Yu., “Otdelimost vypuklykh mnozhestv ekstremalnymi giperploskostyami”, Fundament. i prikl. matem., 17:4 (2011/2012), 3–12 | MR
[16] Albrekht P. V., “Poryadki modulei nepreryvnosti operatorov pochti nailuchshego priblizheniya”, Matem. sb., 185:9 (1994), 3–28 | MR | Zbl
[17] Andreev V. I., “O suschestvovanii razryvnykh metricheskikh proektsii”, Matem. zametki, 16:6 (1974), 857–864 | MR | Zbl
[18] Akhiezer N. I., “Ob ekstremalnykh svoistvakh nekotorykh drobnykh funktsii”, DAN SSSR, 18 (1930), 495–499
[19] Balaganskii V. S., “O vypuklykh antiproksiminalnykh mnozhestvakh bez naibolee udalënnykh tochek”, Tr. IMM UrO RAN, 17, no. 3, 2011, 98–104
[20] Balaganskii V. S., Vlasov L. P., Approksimativno-geometricheskie svoistva mnozhestv v banakhovykh prostranstvakh, Preprint, IMM UrO RAN, Ekaterinburg, 1990
[21] Balaganskii V. S., Vlasov L. P., “Problema vypuklosti chebyshëvskikh mnozhestv”, UMN, 51:6 (1996), 125–188 | DOI | MR | Zbl
[22] Balashov M. V., Ivanov G. E., “Slabo vypuklye i proksimalno gladkie mnozhestva v banakhovykh prostranstvakh”, Izv. RAN. Ser. matem., 73:3 (2009), 23–66 | DOI | MR | Zbl
[23] Bednov B. B., Kratchaishie seti v banakhovykh prostranstvakh, Dis. $\dots$ kand. fiz.-mat. nauk, M., 2014
[24] Berdyshev V. I., “O module nepreryvnosti operatora nailuchshego priblizheniya”, Matem. zametki, 15:5 (1974), 797–808 | MR | Zbl
[25] Berdyshev V. I., “Prostranstva s ravnomerno nepreryvnoi metricheskoi proektsiei”, Matem. zametki, 17:1 (1975), 3–12 | MR | Zbl
[26] Berdyshev V. I., “Nepreryvnost mnogoznachnogo otobrazheniya, svyazannogo s zadachei minimizatsii funktsionala”, Izv. AN SSSR. Ser. matem., 44:3 (1980), 483–509 | MR | Zbl
[27] Berdyshev V. I., “Varirovanie normy v zadache o nailuchshem priblizhenii”, Matem. zametki, 29:2 (1981), 181–196 | MR | Zbl
[28] Berdyshev V. I., Petrak L. V., Approksimatsiya funktsii, szhatie chislennoi informatsii, prilozheniya, UrO RAN, Ekaterinburg, 1999 | MR
[29] Borodin P. A., “Primer ogranichennogo approksimativno kompaktnogo mnozhestva, ne yavlyayuschegosya kompaktnym”, UMN, 49:4 (1994), 157–158 | MR | Zbl
[30] Borodin P. A., “Vypuklost $2$-chebyshëvskikh mnozhestv v gilbertovom prostranstve”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2008, no. 3, 16–19 | MR | Zbl
[31] Borodin P. A., “Priblizhenie naiprosteishimi drobyami na poluosi”, Matem. sb., 200:8 (2009), 25–44 | DOI | MR | Zbl
[32] Borodin P. A., “O vypuklosti $n$-chebyshëvskikh mnozhestv”, Izv. RAN. Ser. matem., 75:4 (2011), 19–46 | DOI | MR | Zbl
[33] Borodin P. A., “Priblizhenie naiprosteishimi drobyami s ogranicheniem na polyusy”, Matem. sb., 203:11 (2012), 23–40 | DOI | MR | Zbl
[34] Borodin P. A., “Primery mnozhestv s zadannymi approksimativnymi svoistvami v WCG-prostranstve”, Matem. zametki, 94:5 (2013), 643–647 | DOI | MR | Zbl
[35] Vasileva A. A., “Zamknutye promezhutki v $C(T)$ i $L_\varphi(T)$ i ikh approksimativnye svoistva”, Matem. zametki, 73:1 (2003), 135–138 | DOI | MR | Zbl
[36] Vasileva A. A., “Zamknutye promezhutki v vektornoznachnykh funktsionalnykh prostranstvakh i ikh approksimativnye svoistva”, Izv. RAN. Ser. matem., 68:4 (2004), 75–116 | DOI | MR | Zbl
[37] Vasileva A. A., “Kriterii suschestvovaniya gladkoi funktsii pri ogranicheniyakh”, Matem. zametki, 82:3 (2007), 335–346 | DOI | MR | Zbl
[38] Vlasov L. P., “Approksimativno vypuklye mnozhestva v banakhovykh prostranstvakh”, DAN SSSR, 163 (1965), 18–21 | MR | Zbl
[39] Vlasov L. P., “O chebyshëvskikh i approksimativno vypuklykh mnozhestvakh”, Matem. zametki, 2:2 (1967), 191–200 | MR | Zbl
[40] Vlasov L. P., Chebyshëvskie mnozhestva i ikh obobscheniya, Dis. $\dots$ kand. fiz.-mat. nauk, Sverdlovsk, 1967
[41] Vlasov L. P., “Chebyshëvskie mnozhestva i nekotorye ikh obobscheniya”, Matem. zametki, 3:1 (1968), 59–69 | MR | Zbl
[42] Vlasov L.|P., “Approksimativnye svoistva mnozhestv v banakhovykh prostranstvakh”, Matem. zametki, 7:5 (1970), 593–604 | MR | Zbl
[43] Vlasov L. P., “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, UMN, 28:6 (1973), 3–66 | MR | Zbl
[44] Vlasov L. P., “O pochti vypuklykh mnozhestvakh”, Matem. zametki, 18:3 (1975), 343–356 | MR | Zbl
[45] Garkavi A. L., “Obschie teoremy ob ochistke”, Rev. Math. Pures Appl., 6:2 (1961), 293–303 | MR
[46] Garkavi A. L., “O kriterii elementa nailuchshego priblizheniya”, Sib. matem. zhurn., 5:2 (1964), 472–476 | MR | Zbl
[47] Garkavi A. L., “O suschestvovanii nailuchshego priblizheniya funktsii dvukh peremennykh summami ploskikh voln”, Tr. MIAN, 219, 1997, 130–136 | MR | Zbl
[48] Goncharov V. L., “Teoriya nailuchshego priblizheniya funktsii”, Nauchnoe nasledie P. L. Chebyshëva, Izd-vo AN SSSR, M.–L., 1945, 122–172
[49] Gusak A. A., Teoriya priblizheniya funktsii, BGU, Minsk, 1972
[50] Efimov N. V., Stechkin S. B., “Nekotorye svoistva chebyshëvskikh mnozhestv”, DAN SSSR, 118:1 (1958), 17–19 | MR | Zbl
[51] Efimov N. V., Stechkin S. B., “Approksimativnaya kompaktnost i chebyshëvskie mnozhestva”, DAN SSSR, 140:3 (1961), 522–524 | MR | Zbl
[52] Zinger I., “O prodolzhenii lineinykh funktsionalov”, Rev. Math. Pures Appl., 1:2 (1956), 115–123 | MR
[53] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i eë prilozheniya, Nauka, M., 1988
[54] Ivanov G. E., Lopushanski M. S., “Approksimativnye svoistva slabo vypuklykh mnozhestv v prostranstvakh s nesimmetrichnoi polunormoi”, Tr. MFTI, 4:4 (2012), 94–104
[55] Karlov M. I., Tsarkov I. G., “Vypuklost i svyaznost chebyshëvskikh mnozhestv i solnts”, Fundament. i prikl. matem., 3:4 (1997), 967–978 | MR | Zbl
[56] Konyagin S. V., “Svyaznost mnozhestv v zadachakh nailuchshego priblizheniya”, DAN SSSR, 261:1 (1981), 20–23 | MR | Zbl
[57] Konyagin S. V., “O mnozhestvakh tochek nepustoty i nepreryvnosti metricheskoi proektsii”, Matem. zametki, 33:5 (1983), 641–655 | MR | Zbl
[58] Konyagin S. V., “O nepreryvnosti operatora obobschënnogo ratsionalnogo priblizheniya”, Matem. zametki, 44:3 (1988), 404 | MR | Zbl
[59] Konyagin S. V., “Ob approksimativnykh svoistvakh proizvolnykh zamknutykh mnozhestv v banakhovykh prostranstvakh”, Fundament. i prikl. matem., 3:4 (1997), 979–989 | MR | Zbl
[60] Konyagin S. V., Tsarkov I. G., “Prostranstva Efimova–Stechkina”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1986, no. 5, 20–27 | MR | Zbl
[61] Koscheev V. A., “Svyaznost i approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, Matem. zametki, 17:2 (1975), 193–204 | MR | Zbl
[62] Koscheev V. A., “Nekotorye svoistva $\delta$-proektsii v lineinykh normirovannykh prostranstvakh”, Izv. vyssh. uchebn. zaved. Matematika, 1976, no. 5, 36–42 | MR | Zbl
[63] Koscheev V. A., “Svyaznost i solnechnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, Matem. zametki, 19:2 (1976), 267–278 | MR | Zbl
[64] Koscheev V. A., “Primer nesvyaznogo solntsa v banakhovom prostranstve”, Matem. zametki, 26:1 (1979), 89–92 | MR | Zbl
[65] Koscheev V. A., “Svyaznost po Vlasovu–Vulbertu mnozhestv v gilbertovom prostranstve”, Matem. zametki, 80:5 (2006), 790–792 | DOI | MR | Zbl
[66] Livshits E. D., “Ob ustoichivosti operatora $\varepsilon$-proektsii na mnozhestvo splainov v prostranstve $C[0,1]$”, Izv. RAN. Ser. matem., 67:1 (2003), 99–130 | DOI | MR | Zbl
[67] Livshits E. D., “O pochti nailuchshem priblizhenii kusochno-polinomialnymi funktsiyami v prostranstve $C[0,1]$”, Matem. zametki, 78:4 (2005), 629–633 | DOI | MR | Zbl
[68] Malykhin Yu. V., “Uslovie vypuklosti v teoremakh Kukera–Smeila v teorii obucheniya”, Matem. zametki, 84:1 (2008), 144–148 | DOI | MR | Zbl
[69] Marinov A. V., “Otsenki ustoichivosti nepreryvnoi selektsii dlya metricheskoi pochti-proektsii”, Matem. zametki, 55:4 (1994), 47–53 | MR | Zbl
[70] Marinov A. V., “Konstanty Lipshitsa operatora metricheskogo $\varepsilon$-proektirovaniya v prostranstvakh s zadannymi modulyami vypuklosti i gladkosti”, Izv. RAN. Ser. matem., 62:2 (1998), 103–130 | DOI | MR | Zbl
[71] Melikhov S. A., “Stinrodovskie gomotopii”, UMN, 64:3(387) (2009), 73–166 | DOI | MR | Zbl
[72] Nevesenko N. V., “Strogie solntsa i polunepreryvnost metricheskoi proektsii v lineinykh normirovannykh prostranstvakh”, Matem. zametki, 23:4 (1978), 563–572 | MR | Zbl
[73] Nevesenko N. V., “Metricheskaya proektsiya i svyaznost mnozhestv v lineinykh normirovannykh prostranstvakh”, Izv. vyssh. uchebn. zaved. Matematika, 1979, no. 1, 51–53 | MR | Zbl
[74] Oshman E. V., “Chebyshëvskie mnozhestva i nepreryvnost metricheskoi proektsii”, Izv. vyssh. uchebn. zaved. Matematika, 1970, no. 9(100), 78–82 | MR | Zbl
[75] Oshman E. V., “Kharakteristika podprostranstv s nepreryvnoi metricheskoi proektsiei v lineinom normirovannom prostranstve”, DAN SSSR, 207:2 (1972), 78–82
[76] Polovinkin E. S., Balashov M. V., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004
[77] Pyatyshev I. A., “Primer ogranichennogo approksimativno kompaktnogo mnozhestva, ne yavlyayuschegosya lokalno kompaktnym”, UMN, 62:5 (2007), 163–164 | DOI | MR | Zbl
[78] Rubinshtein G. Sh., “O ravnomernom priblizhenii funktsii s pomoschyu obobschënnykh ratsionalnykh funktsii”, UMN, 15:3 (1960), 232–234
[79] Ryutin K. S., “Lipshitsevost retraktsii i operator obobschënnogo ratsionalnogo priblizheniya”, Fundament. i prikl. matem., 6:4 (2000), 1205–1220 | MR | Zbl
[80] Ryutin K. S., Approksimativnye svoistva obobschënnykh ratsionalnykh funktsii, Dis. $\dots$ kand. fiz.-mat. nauk, M., 2002
[81] Ryutin K. S., “O ravnomerno nepreryvnykh operatorakh pochti nailuchshego obobschënnogo ratsionalnogo priblizheniya”, Matem. zametki, 87:1 (2010), 147–150 | DOI | MR | Zbl
[82] Solovëv V. N., “O subdifferentsiale i proizvodnykh po napravleniyam maksimuma semeistva vypuklykh funktsii”, Izv. RAN. Ser. matem., 62:4 (1998), 173–200 | DOI | MR | Zbl
[83] Sosov E. N., “O nepreryvnosti i svyaznosti metricheskoi $\delta$-proektsii v ravnomerno vypuklom geodezicheskom prostranstve”, Izv. vyssh. uchebn. zaved. Matematika, 2001, no. 3, 55–59 | MR | Zbl
[84] Tikhomirov V. M., “Teoriya priblizhenii”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya., 14, 1987, 103–260 | MR | Zbl
[85] Fonf V. P., “Slabo ekstremalnye svoistva banakhovykh prostranstv”, Matem. zametki, 45:6 (1989), 83–92 | MR | Zbl
[86] Fursikov A. V., “Svoistva reshenii nekotorykh ekstremalnykh zadach, svyazannykh s sistemoi Nave–Stoksa”, Matem. sb., 118(160):3 (1982), 323–349 | MR | Zbl
[87] Fursikov A. V., “Nekotorye voprosy teorii optimalnogo upravleniya nelineinymi sistemami s raspredelënnymi parametrami”, Tr. seminara im. I. G. Petrovskogo, 9, 1983, 167–189 | MR | Zbl
[88] Fursikov A. V., Optimalnoe upravlenie raspredelënnymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999
[89] Khavinson S. Ya., “Approksimativnye svoistva nekotorykh mnozhestv v prostranstvakh nepreryvnykh funktsii”, Analysis Math., 29 (2003), 87–105 | DOI | MR
[90] Tsarkov I. G., “Ogranichennye chebyshëvskie mnozhestva v konechnomernykh banakhovykh prostranstvakh”, Matem. zametki, 36:1 (1984), 73–87 | MR | Zbl
[91] Tsarkov I. G., “O svyaznosti nekotorykh klassov mnozhestv v banakhovykh prostranstvakh”, Matem. zametki, 40:2 (1986), 174–196 | MR | Zbl
[92] Tsarkov I. G., “O kompaktnykh i slabo kompaktnykh chebyshëvskikh mnozhestvakh v lineinykh normirovannykh prostranstvakh”, DAN SSSR, 300:1 (1988), 41–42 | MR | Zbl
[93] Tsarkov I. G., “Kompaktnye i slabo kompaktnye chebyshëvskie mnozhestva v lineinykh normirovannykh prostranstvakh”, Tr. MIAN SSSR, 189, 1989, 169–184 | MR | Zbl
[94] Tsarkov I. G., “Lokalnaya “odnorodnost” mnozhestva edinstvennosti”, Matem. zametki, 45:5 (1989), 121–123 | MR | Zbl
[95] Tsarkov I. G., “Nepreryvnost metricheskoi proektsii, strukturnye i approksimativnye svoistva mnozhestv”, Matem. zametki, 47:2 (1990), 137–148 | MR | Zbl
[96] Tsarkov I. G., “Svoistva mnozhestv, obladayuschikh nepreryvnoi vyborkoi iz operatora $P^\delta$”, Matem. zametki, 48:4 (1990), 122–131 | MR | Zbl
[97] Tsarkov I. G., “Needinstvennost reshenii nekotorykh differentsialnykh uravnenii i ikh svyaz s geometricheskoi teoriei priblizheniya”, Matem. zametki, 75:2 (2004), 287–301 | DOI | MR | Zbl
[98] Tsarkov I. G., “Ustoichivost odnoznachnoi razreshimosti dlya nekotorykh differentsialnykh uravnenii”, Tr. IMM UrO RAN, no. 3, 2008, 170–182
[99] Tsarkov I. G., “Approksimativnaya kompaktnost i needinstvennost v variatsionnykh zadachakh i ikh prilozheniya k differentsialnym uravneniyam”, Matem. sb., 202:6 (2011), 133–158 | DOI | MR | Zbl
[100] Tsarkov I. G., “Svoistva mnozhestv, obladayuschikh ustoichivoi $\varepsilon$-vyborkoi”, Matem. zametki, 89:4 (2011), 608–613 | DOI | MR | Zbl
[101] Tsarkov I. G., “Ustoichivost odnoznachnoi razreshimosti kvazilineinykh uravnenii po dopolnitelnoi informatsii”, Matem. zametki, 90:6 (2011), 918–946 | DOI | MR
[102] Tsarkov I. G., “Mnozhestva, obladayuschie nepreryvnoi vyborkoi iz operatora pochti nailuchshego priblizheniya”, K 80-letiyu mekhaniko-matematicheskogo fakulteta MGU im. M. V. Lomonosova, Sovremennye problemy matematiki i mekhaniki, 9, no. 2, Izd-vo Mosk. un-ta, M., 2014, 54–58
[103] Chesnokova K. V., “Koeffitsient lineinosti metricheskoi proektsii dlya odnomernykh chebyshëvskikh podprostranstv v prostranstve $C$”, Matem. zametki, 96:4 (2014), 588–595 | DOI | Zbl
[104] Yashina M. V., “O plotnosti mnozhestva nekotorykh ekstremalnykh zadach”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1986, no. 6, 54–56 | MR | Zbl
[105] Yashina M. V., O edinstvennosti resheniya nelineinykh zadach upravleniya sistemami s raspredelënnymi parametrami, Dis. $\dots$ kand. fiz.-mat. nauk, M., 1989
[106] Aizpuru A., Garcia-Pacheco F. J., “Some questions about rotundity and renormings in Banach spaces”, J. Aust. Math. Soc., 79 (2005), 131–140 | DOI | MR | Zbl
[107] Alimov A. R., “A number of connected components of sun's complement”, East J. Approx., 1:4 (1995), 419–429 | MR | Zbl
[108] Alimov A. R., “Chebyshev set's complement”, East J. Approx., 2:2 (1996), 215–232 | MR | Zbl
[109] Alimov A. R., “The number of connected components of Chebyshev sets and suns complement”, Proc. A. Razmadze Math. Inst., 117, 1998, 135–136
[110] Alimov A. R., “Characterisations of Chebyshev sets in $c_0$”, J. Approx. Theory, 129 (2004), 217–229 | DOI | MR | Zbl
[111] Amir D., Deutsch F., “Suns, moons and quasi-polyhedra”, J. Approx. Theory, 6 (1972), 176–201 | DOI | MR | Zbl
[112] Andres J., Gabor G., Górniewicz L., “Acyclicity of solution sets to functional inclusions”, Nonlinear Anal., 49 (2002), 671–688 | DOI | MR | Zbl
[113] Balaganskii V. S., “An antiproximinal set in a strictly convex space with Frechet differentiable norm”, East J. Appr., 2:2 (1996), 131–138 | MR
[114] Balashov M. V., Repovš D., “Uniform convexity and the splitting problem for selections”, J. Math. Anal. Appl., 360:1 (2009), 307–316 | DOI | MR | Zbl
[115] Bauschke H. H., Wang X., Ye J., Yuan X., “Bregman distances and Chebyshev sets”, J. Approx. Theory, 159 (2009), 3–25 | DOI | MR | Zbl
[116] Bauschke H. H., Wang X., Ye J., Yuan X., “Bregman distances and Klee sets”, J. Approx. Theory, 158 (2009), 170–183 | DOI | MR | Zbl
[117] Benyamini Y., Lindenstrauss J., Geometric Nonlinear Functional Analysis, v. 1, Amer. Math. Soc., Providence, 2000 | MR | Zbl
[118] Berens H., Hetzelt L., “Suns and contractive retracts in the plane”, Teoriya priblizhenii funktsii, Tr. Mezhdunar. konf. (Kiev, 31 maya – 5 iyunya, 1983), eds. N. P. Korneichuk i dr., Nauka, M., 1983, 483–487
[119] Berens H., Hetzelt L., “Die metrische Struktur der Sonnen in $\ell^\infty(n)$”, Aequat. Math., 27 (1984), 274–287 | DOI | MR | Zbl
[120] Berens H., Hetzelt L., “On accretive operators on $\ell^\infty_n$”, Pacific J. Math., 125:2 (1986), 301–315 | DOI | MR | Zbl
[121] Bernard F., Thibault L., “Prox-regularity of functions and sets in Banach spaces”, Set-Valued Anal., 12 (2004), 25–47 | DOI | MR | Zbl
[122] Blatter J., Morris P. D., Wulbert D. E., “Continuity of the set-valued metric projection”, Math. Ann., 178:1 (1968), 12–24 | DOI | MR | Zbl
[123] Borel É., Leçons sur les fonctions de variables reelles et les développements en séries de polynomes, Gauthier-Villars, Paris, 1905
[124] Böröczky K. (Jr.), Finite Packing and Covering, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl
[125] Borwein J. M., Vanderwerff J. D., Convex Functions: Constructions, Characterizations and Counterexamples, Cambridge Univ. Press, Cambridge, 2010 | MR | Zbl
[126] Braess D., Nonlinear Approximation Theory, Springer, Berlin, 1986 | MR | Zbl
[127] Braess D., “Geometrical characterizations for nonlinear uniform approximation”, J. Approx. Theory, 11 (1974), 260–274 | DOI | MR | Zbl
[128] Breckner B. E., Horváth A., Varga C., “A multiplicity result for a special class of gradient-type systems with non-differentiable term”, Nonlinear Anal., 70 (2009), 606–620 | DOI | MR | Zbl
[129] Breckner W. W., “Zur Charakterisierung von Minimallösungen”, Mathematica (Cluj), 12(35):1 (1970), 25–38 | MR | Zbl
[130] Breckner W. W., Brosowski B., “Ein Kriterium zur Charakterisierung von Sonnen”, Mathematica (Cluj), 13 (1971), 181–188 | MR | Zbl
[131] Brøndsted A., “Convex sets and Chebyshev sets”, Math. Scand., 17:1 (1965), 5–16 | MR
[132] Brøndsted A., “Convex sets and Chebyshev sets. II”, Math. Scand., 18:1 (1965), 5–15 | MR
[133] Brosowski B., Nicht-lineare Tschebyscheff-Approximation, Bibliogr. Inst. Hochschulskripten, 808/808a, Bibliogr. Inst., Mannheim, 1968 | MR | Zbl
[134] Brosowski B., “Einige Bemerkungen zum verallgemeinerten Kolmogoroffschen Kriterium”, Funktionalanalytische Methoden der numerischen Mathematik, Vortragsauszüge der Tagung über funktionalanalytische Methoden der numerischen Mathematik vom 19. bis 25 (November 1967, Mathematischen Forschungsinstitut Oberwolfach, Schwarzwald), International Series of Numerical Mathematics, 12, eds. L. Collatz, H. Unger, Birkhäuser, Basel, 1969, 25–34 | MR
[135] Brosowski B., “Nichtlineare Approximation in normierten Vektorraumen”, Abstract Spaces and Approximation, Proc. Conf. (Mathematical Research Institute, Oberwolfach, Black Forest, July 18–27, 1968), eds. P. L. Butzer, B. Szőkefalvi-Nagy, Birkhäuser, Basel, 1969, 140–159 | MR
[136] Brosowski B., Deutsch F., On some geometrical properties of suns, Preprint, Ges. Wiss. Datenverarb. MBH, Göttingen, 1972
[137] Brosowski B., Deutsch F., “Some new continuity concepts for metric projections”, Bull. Amer. Math. Soc., 6 (1972), 974–978 | DOI | MR
[138] Brosowski B., Deutsch F., “On some geometric properties of suns”, J. Approx. Theory, 10 (1974), 245–267 | DOI | MR | Zbl
[139] Brosowski B., Deutsch F., “Radial continuity of set-valued metric projection”, J. Approx. Theory, 11 (1974), 236–253 | DOI | MR | Zbl
[140] Brosowski B., Deutsch F., Lambert J., Morris P. D., “Chebyshev sets which are not suns”, Math. Ann., 212:1 (1974), 89–101 | DOI | MR | Zbl
[141] Brosowski B., Wegmann R., “Charakterisierung bester Approximationen in normierten Vektorräumen”, J. Approx. Theory, 3:4 (1970), 369–397 | DOI | MR | Zbl
[142] Brown A. L., “A rotund, reflexive space having a subspace of co-dimension $2$ with a discontinuous metric projection”, Michigan Math. J., 21 (1974), 145–151 | DOI | MR | Zbl
[143] Brown A. L., “Chebyshev sets and facial systems of convex sets in finite-dimensional spaces”, Proc. Lond. Math. Soc. (3), 41 (1980), 297–339 | DOI | MR | Zbl
[144] Brown A. L., “Chebyshev sets and the shapes of convex bodies”, Methods of Functional Analysis in Approximation Theory, Proc. Int. Conf. (Indian Inst. Techn., Bombay, December 16–20, 1985), ed. C. A. Micchelli, Birkhäuser, Basel, 1986, 97–121 | MR
[145] Brown A. L., “Suns in normed linear spaces which are finite-dimensional”, Math. Ann., 279 (1987), 87–101 | DOI | MR | Zbl
[146] Brown A. L., “On the connectedness properties of suns in finite dimensional spaces”, Proc. Cent. Math. Anal. Aust. Natl. Univ., 20 (1988), 1–15 | MR | Zbl
[147] Brown A. L., “On the problem of characterising suns in finite dimensional spaces”, Rend. Circ. Math. Palermo. Ser. II, 68 (2002), 315–328 | MR | Zbl
[148] Brown A. L., “Suns in polyhedral spaces”, Sem. Math. Anal. Proc. (Univ. Malaga and Seville, Spain, Sept. 2002 – Feb. 2003), eds. D. G. Álvarez, G. Lopez Acedo, R. V. Caro, Univ. de Sevilla, Sevilla, 2003, 139–146 | MR | Zbl
[149] Bunt L. N. H., Bijdrage tot de theorie der convexe puntverzamelingen, Thesis, Amsterdam, 1934
[150] Butzer P., Jongmans F., “P. L. Chebyshev (1821–1894): A guide to his life and work”, J. Approx. Theory, 96 (1999), 111–138 | DOI | MR | Zbl
[151] Cheney E. W., Introduction to Approximation Theory, McGraw-Hill, New York, 1966 | MR | Zbl
[152] Chidume Ch., Geometric Properties of Banach Spaces and Nonlinear Iterations, Springer, London, 2009 | MR | Zbl
[153] Chong L., Watson G. A., “Characterization of a best and a unique best approximation from constrained rationals”, Comput. Math. Appl., 30 (1995), 51–57 | DOI | MR | Zbl
[154] Choquet G., “Sur la meilleure approximation dans les espaces vectoriels normés”, Rev. Math. Pures Appl., 8:4 (1963), 541–542 | MR | Zbl
[155] Cobzaş S., “Geometric properties of Banach spaces and the existence of nearest and farthest points”, J. Abstr. Appl. Anal., 2005, no. 3, 259–285 | DOI | MR | Zbl
[156] Cobzaş S., Functional Analysis in Asymmetric Normed Spaces, Birkhäuser, Basel, 2012 | MR
[157] Dancer E., Sims B., “Weak star separability”, Bull. Aust. Math. Soc., 20:2 (1979), 253–257 | DOI | MR | Zbl
[158] Deutsch F. R., Best Approximation in Inner Product Spaces, Springer, Berlin, 2001 | MR | Zbl
[159] Deutsch F., Lambert J. M., “On continuity of metric projections”, J. Approx. Theory, 29:2 (1980), 116–131 | DOI | MR | Zbl
[160] Dierieck C., “Characterization for best nonlinear approximations: A geometrical interpretation”, J. Approx. Theory, 14:3 (1975), 163–187 | DOI | MR | Zbl
[161] Dragoni R., Macki J. W., Nistri P., Zecca P., Solution Sets of Differential Equations in Abstract Spaces, Longman, Harlow, 1996 | MR | Zbl
[162] Dunham Ch., “Rational Chebyshev approximation on subsets approximation”, J. Approx. Theory, 1 (1968), 484–487 | DOI | MR | Zbl
[163] Dunham Ch., “Characterizability and uniqueness in real Chebyshev approximation”, J. Approx. Theory, 2 (1969), 374–383 | DOI | MR | Zbl
[164] Dunham Ch., “Chebyshev sets in $C[0,1]$ which are not suns”, Can. Math. Bull., 18:1 (1975), 35–37 | DOI | MR | Zbl
[165] Dunham Ch., “Transformed rational Chebyshev approximation”, J. Approx. Theory, 19 (1977), 200–204 | DOI | MR | Zbl
[166] Dunham Ch., “Chebyshev approximation by products”, J. Approx. Theory, 43 (1985), 299–301 | DOI | MR | Zbl
[167] Eda K., Karimov U. H., Repovš D., “On (co)homology locally connected spaces”, Topol. Appl., 120 (2002), 397–401 | DOI | MR | Zbl
[168] Faraci F., Iannizzotto A., “An extension of a multiplicity theorem by Ricceri with an application to a class of quasilinear equations”, Stud. Math., 172 (2006), 275–287 | DOI | MR | Zbl
[169] Faraci F., Iannizzotto A., “Well posed optimization problems and nonconvex Chebyshev sets in Hilbert spaces”, SIAM J. Optim., 19:1 (2008), 211–216 | DOI | MR | Zbl
[170] Fletcher J., The Chebyshev set problem, Master of Science Thesis, Univ. of Auckland, 2013
[171] Fonf V. P., Lindenstrauss J., Veselý L., “Best approximation in polyhedral Banach spaces”, J. Approx. Theory, 163 (2011), 1748–1771 | DOI | MR | Zbl
[172] Franchetti C., Cheney E. W., “The embedding of proximinal sets”, J. Approx. Theory, 48:2 (1986), 213–225 | DOI | MR | Zbl
[173] Franchetti C., Roversi S., Suns, $M$-connected sets and $P$-acyclic sets in Banach spaces, Preprint no. 50139, Ist. di Mat. Appl. “G. Sansone”, 1988
[174] Giles J. R., “The Mazur intersection problem”, J. Convex Anal., 13:3–4 (2006), 739–750 | MR | Zbl
[175] Giles J. R., Gregory D. A., Sims B., “Characterisation of normed linear spaces with Mazur's intersection property”, Bull. Aust. Math. Soc., 18 (1978), 105–123 | DOI | MR | Zbl
[176] Goebel K., Kirk W. A., Topics in Metric Fixed Point Theory, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl
[177] Goncharov V. L., “The theory of best approximation of functions”, J. Approx. Theory, 106 (2000), 2–57 | DOI | MR | Zbl
[178] Górniewicz L., “Topological structure of solution sets: current results”, Arch. Math. (Brno), 36 (2000), 343–382 | MR | Zbl
[179] Górniewicz L., Topological Fixed Point Theory of Multivalued Mappings, Springer, Berlin, 2006 | MR | Zbl
[180] Granero A. S., Jiménez-Sevilla M., Moreno J. P., “Intersections of closed balls and geometry of Banach spaces”, Extracta Math., 19:1 (2004), 55–92 | MR | Zbl
[181] Gruber P. M., “Planar Chebyshev sets”, Mathem. Structure – Computational Math. – Math. Modelling, v. 2, Bulgar. Acad. Sci., Sofia, 1984, 184–191 | MR
[182] Haghshenas H., Assadi A., Narang T. D., “A look at proximinal and Chebyshev sets in Banach spaces”, Le Matematiche, 69:I (2014), 71–87 | MR
[183] Hart K. P., Nagata J., Vaughan J. E., Encyclopedia of General Topology, Elsevier, Amsterdam, 2004 | MR | Zbl
[184] Hsiao H. K., Smarzewski R., “Optimal sunny selections for metric projections”, J. Approx. Theory, 82:3 (1995), 440–467 | DOI | MR | Zbl
[185] Sze-Tsen Hu, Theory of Retracts, Wayne State Univ. Press, Detroit, 1965 | MR
[186] Hu Sh., Papageorgiou N. S., Handbook of Multivalued Analysis, v. II, Applications, Kluwer, Dordrecht, 2000 | MR | Zbl
[187] Ivanov G. E., “On well posed best approximation problems for a nonsymmetric seminorm”, J. Convex Anal., 20:2 (2013), 501–529 | MR | Zbl
[188] Jiang M., “On Johnson's example of a nonconvex Chebyshev set”, J. Approx. Theory, 74 (1993), 152–158 | DOI | MR | Zbl
[189] Jiménez-Sevilla M., Moreno J. P., “A note on norm attaining functionals”, Proc. Am. Math. Soc., 126 (1998), 1989–1997 | DOI | MR | Zbl
[190] Johnson G G., “Chebyshev foam”, Topology Appl., 74 (1999), 163–171 | DOI | MR
[191] Johnson G. G., “Closure in a Hilbert space of a preHilbert space Chebyshev set”, Topology Appl., 153 (2005), 239–244 | DOI | MR | Zbl
[192] Jourani A., Thibault L., Zagrodny D., “Differential properties of the Moreau envelope”, J. Funct. Anal., 266 (2014), 1185–1237 | DOI | MR | Zbl
[193] Kirchberger P., “Über Tschebyscheffsche Annäherungsmethoden”, Math. Ann., 57 (1903), 509–540 | DOI | MR | Zbl
[194] Klee V., “A characterization of convex sets”, Am. Math. Mon., 56 (1949), 247–249 | DOI | MR | Zbl
[195] Klee V., “Dispersed Chebyshev sets and covering by balls”, Math. Ann., 257:2 (1981), 251–260 | DOI | MR | Zbl
[196] Klee V., “Do infinite-dimensional Banach spaces admit nice tiling?”, Stud. Sci. Math. Hungar., 21 (1986), 415–427 | MR | Zbl
[197] König H., “A general minimax theorem based on connectedness”, Arch. Math. (Basel), 59 (1992), 55–64 | DOI | MR | Zbl
[198] Koshcheev V. A., “On the structure of suns in Banach spaces”, Approximation of Functions, ed. Z. Ciesielski, North-Holland, Gdańsk, 1979, 371–376 | MR
[199] Kryszewski W., “On the existence of equilibria and fixed points of maps under constraints”, Handbook of Topological Fixed Point Theory, eds. R. F. Brown, M. Furi et al., Springer, Berlin, 2005, 783–866 | DOI | MR | Zbl
[200] Li C., Song W., Yao J.-C., “The Bregman distance, approximate compactness and convexity of Chebyshev sets in Banach spaces”, J. Approx. Theory, 162 (2010), 1128–1149 | DOI | MR | Zbl
[201] Livshits E. D., “Continuous selections of operators of almost best approximation by splines in the space $L^p[0,1]$. I”, Russ. J. Math. Phys., 12:2 (2005), 215–218 | MR | Zbl
[202] Maehly H. J., Witzgall Ch., “Tschebyscheff-Approximation in kleinen Intervallen. II. Stetigkeitssatze flir gebrochen rationale Approximationen”, Numer. Math., 2 (1960), 293–307 | DOI | MR
[203] Mann H., “Untersuchungen über Wabenzellen bei allgemeiner Minkowskischer Metrik”, Monatsh. Math. Phys., 42 (1937), 74–83 | DOI
[204] Massey W. S., Homology and Cohomology Theory, Marcel Dekker, New York, 1978 | MR | Zbl
[205] Megginson R. E., An Introduction to Banach Space Theory, Springer, New York, 1998 | MR | Zbl
[206] Meinardus G., Schwedt D., “Nichtlineare Approximation”, Arch. Ration. Mech. Anal., 17 (1964), 297–326 | DOI | MR | Zbl
[207] Menger K., “Untersuchungen über allgemeine Metrik”, Math. Ann., 100 (1928), 75–163 | DOI | MR | Zbl
[208] Moreno J. P., Schneider R., “Continuity properties of the ball hull mapping”, Nonlinear Anal., 66 (2007), 914–925 | DOI | MR | Zbl
[209] Motzkin T. S., “Sur quelques propriétés caractéristiques des ensembles convexes”, Rend. Ac. Lincei, Cl. VI, 21 (1935), 562–567 | Zbl
[210] Nürnberger G., “Strongly unique spline approximation with free knots”, Constr. Approx., 3 (1987), 31–42 | DOI | MR | Zbl
[211] Nürnberger G., Approximation by Spline Functions, Springer, Berlin, 1989 | MR | Zbl
[212] Papadopoulou S., “A connected separable metric space with a dispersed Chebyshev set”, J. Approx. Theory, 39 (1983), 320–323 | DOI | MR | Zbl
[213] Papini P. L., “Minimal and closest points nonexpansive and quasi-nonexpansive retractions in real Banach spaces”, Convexity and Its Applications, eds. P. M. Gruber, J. M. Wills, Birkhäuser, Basel, 1983, 248–263 | DOI | MR
[214] Phelps R. R., “A representation theorem for bounded convex sets”, Proc. Am. Math. Soc., 11 (1960), 976–983 | DOI | MR
[215] Poliquin R. A., Rockafellar R. T., “Prox-regular functions in variational analysis”, Trans. Am. Math. Soc., 348 (1996), 1805–1838 | DOI | MR | Zbl
[216] Pollul W., Topologien auf Mengen von Teilmengen und Stetigkeit von mengenwertigen metrischen Projektionen, Diplomarbeit, Bonn, 1967
[217] Repovs̆ D., Semenov P. V., Continuous Selections of Multivalued Mappings, Kluwer, Dordrecht, 1998 | MR | Zbl
[218] Repovs̆ D., Semenov P. V., “Continuous selections of multivalued mappings”, Recent Progress in General Topology, v. III, eds. K. P. Hart, J. van Mill, P. Simon, Atlantis Press, 2014, 711–750 | DOI | MR
[219] Ricceri B., “A general multiplicity theorem for certain nonlinear equations in Hilbert spaces”, Proc. Am. Math. Soc., 133 (2005), 3255–3261 | DOI | MR | Zbl
[220] Ricceri B., “Recent advances in minimax theory and applications”, Pareto Optimality, Game Theory and Equilibria, eds. A. Chinchuluun et al., Springer, Berlin, 2008, 23–52 | DOI | MR | Zbl
[221] Ricceri B., “A conjecture implying the existence of non-convex Chebyshev sets in infinite-dimensional Hilbert spaces”, Matematiche (Catania), 65:2 (2010), 193–199 | MR | Zbl
[222] Schmidt E., “Stetigkeitsaussagen bei der Tschebyscheff-Approximation mit positiven Exponentialsummen”, Math. Z., 113 (1970), 159–170 | DOI | MR | Zbl
[223] Schwartz P., “Two theorems on suns in continuous function spaces”, Approximation Theory. Proc. Int. Sympos. Univ. Texas, Austin, ed. G. G. Lorentz, Academic Press, New York, 1973, 477–480 | MR
[224] Shumaker L. L., Spline Functions. Basic theory, Cambridge Univ. Press, Cambridge, 2007 | MR
[225] Shvartsman P., “Lipschitz selections of set-valued mappings and Helly's theorem”, J. Geom. Anal., 12:2 (2002), 289–324 | DOI | MR | Zbl
[226] Singer I., “Some remarks on approximative compactness”, Rev. Math. Pures Appl., 9:2 (1964), 167–177 | MR | Zbl
[227] Singer I., “On the extension of continuous linear functionals and best approximation in normed linear spaces”, Math. Ann., 159:5 (1965), 344–355 | DOI | MR | Zbl
[228] Singer I., Best approximation in normed linear spaces by elements of linear subspaces, Springer, New York, 1970 | MR | Zbl
[229] Singer I., The Theory of Best Approximation and Functional Analysis, SIAM, Philadelphia, 1974 | MR | Zbl
[230] Sommer M., “Charakterisierung von Minimallösungen in normierten Vektorräumen durch Eigenschaften von Hyperebenen”, J. Approx. Theory, 14 (1975), 103–114 | DOI | MR | Zbl
[231] Steffens K.-G., The History of Approximation Theory. From Euler to Bernstein, Birkhäuser, Bonn, 2006 | MR
[232] Troyanski S. L., “An example of a smooth space whose dual is not strictly normed”, Stud. Math., 35 (1970), 305–309 | MR | Zbl
[233] Vlasov L. P., “ ‘Suns’ and geometric properties of the unit sphere in a Banach space”, Tr. IMM UrO RAN, 5, 1998, 247–253 | Zbl
[234] Volle M., Hiriart-Urruty J.-B., “A characterization of essentially strictly convex functions on reflexive Banach spaces”, Nonlinear Anal., 75 (2012), 1617–1622 | DOI | MR | Zbl
[235] Walsh J. L., “The existence of rational functions of best approximation”, Trans. Am. Math. Soc., 33 (1931), 668–689 | DOI | MR | Zbl
[236] Wang X., “On Chebyshev functions and Klee functions”, J. Math. Anal. Appl., 368 (2010), 293–310 | DOI | MR | Zbl
[237] Wegmann R., “Some properties of the peak-set-mapping”, J. Approx. Theory, 8 (1973), 262–284 | DOI | MR | Zbl
[238] Wulbert D. E., Continuity of metric projections. Approximation theory in a normed linear lattice, Thesis, Austin, 1966 | MR
[239] Wulbert D. E., “Continuity of metric projections”, Trans. Am. Math. Soc., 134:2 (1968), 335–341 | DOI | MR | Zbl
[240] Yang W., Li Ch., Watson G. A., “Characterization and uniqueness of nonlinear uniform approximation”, Proc. Edinburgh Math. Soc., 40 (1997), 473–482 | DOI | MR | Zbl
[241] Zajíček L., “On $\sigma$-porous sets in abstract spaces”, Abstr. Appl. Anal., 2005:5 (2005), 509–534 | DOI | MR | Zbl
[242] Zhang Y., Li Q., Zou X., “One property of Bregman projection onto closed convex sets in Banach spaces and applications”, J. Math. Res., 3:4 (2011), 55–58 | DOI | Zbl