Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2014_19_2_a8, author = {R. V. Markov and V. V. Chermnykh}, title = {On {Pierce} stalks of semirings}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {171--186}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a8/} }
R. V. Markov; V. V. Chermnykh. On Pierce stalks of semirings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 2, pp. 171-186. http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a8/
[1] Bredon G., Teoriya puchkov, Nauka, M., 1988 | MR | Zbl
[2] Vechtomov E. M., Mikhalëv A. V., Chermnykh V. V., “Abelevo regulyarnye polozhitelnye polukoltsa”, Tr. seminara im. I. G. Petrovskogo, 20, 1997, 282–309 | Zbl
[3] Lambek I., Koltsa i moduli, Mir, M., 1971 | MR | Zbl
[4] Markov R. V., Chermnykh V. V., “Pirsovskie tsepi polukolets”, Vestn. Syktyvkarskogo un-ta. Ser. 1, 2012, no. 16, 88–103 | Zbl
[5] Tuganbaev A. A., Teoriya kolets. Arifmeticheskie moduli i koltsa, MTsNMO, M., 2009
[6] Tyukavkin D. V., Pirsovskie puchki dlya kolets s involyutsiei, Dep. v VINITI No 4346-82, MGU, M., 1982, 64 pp.
[7] Chermnykh V. V., “Puchkovye predstavleniya polukolets”, Uspekhi mat. nauk, 48:5 (1993), 185–186 | MR | Zbl
[8] Chermnykh V. V., “Funktsionalnye predstavleniya polukolets”, Fundament. i prikl. mat., 17:3 (2011/2012), 111–227 | MR
[9] Burgess W. D., Stephenson W., “Pierce sheaves of non-commutative rings”, Commun. Algebra, 39 (1976), 512–526 | DOI | MR
[10] Burgess W. D., Stephenson W., “An analogue of the Pierce sheaf for non-commutative rings”, Commun. Algebra, 6:9 (1978), 863–886 | DOI | MR | Zbl
[11] Burgess W. D., Stephenson W., “Rings all of whose Pierce stalks are local”, Can. Math. Bull., 22:2 (1979), 159–164 | DOI | MR | Zbl
[12] Carson A. B., “Representation of regular rinds of finite index”, J. Algebra, 39:2 (1976), 512–526 | DOI | MR | Zbl
[13] Cignoli R., “The lattice of global sections of sheaves of chains over Boolean spaces”, Algebra Universalis, 8:3 (1978), 357–373 | DOI | MR | Zbl
[14] Comer S. D., “Representation by algebras of sections over Boolean spaces”, Pacific. Math., 38 (1971), 29–38 | DOI | MR | Zbl
[15] Cornish W. H., “$0$-ideals, congruences and sheaf representations of distributive lattices”, Rev. Roum. Math. Pures Appl., 22:8 (1977), 200–215 | MR
[16] Dauns J., Hofmann K. H., “The representation of biregular rings by sheaves”, Math. Z., 91:2 (1966), 103–123 | DOI | MR | Zbl
[17] Georgescu G., “Pierce representations of distributive lattices”, Kobe J. Math., 10:1 (1993), 1–11 | MR | Zbl
[18] Keimel K., “The representation of lattice ordered groups and rings by sections in sheaves”, Lectures on the Applications of Sheaves to Ring Theory, Lect. Notes Math., 248, Springer, Berlin, 1971, 2–96 | MR
[19] Pierce R. S., “Modules over commutative regular rings”, Mem. Amer. Math. Soc., 70 (1967), 1–112 | MR
[20] Szeto G., “The sheaf representation of near-rings and its applications”, Commun. Algebra, 5:7 (1977), 773–782 | DOI | MR | Zbl