On Pierce stalks of semirings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 2, pp. 171-186.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we investigate Pierce stalks of semirings and properties of semirings that lift from properties of the stalks. We distinguish classes of semirings that admit characterization by properties of their Pierce sheaves.
@article{FPM_2014_19_2_a8,
     author = {R. V. Markov and V. V. Chermnykh},
     title = {On {Pierce} stalks of semirings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {171--186},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a8/}
}
TY  - JOUR
AU  - R. V. Markov
AU  - V. V. Chermnykh
TI  - On Pierce stalks of semirings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 171
EP  - 186
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a8/
LA  - ru
ID  - FPM_2014_19_2_a8
ER  - 
%0 Journal Article
%A R. V. Markov
%A V. V. Chermnykh
%T On Pierce stalks of semirings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 171-186
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a8/
%G ru
%F FPM_2014_19_2_a8
R. V. Markov; V. V. Chermnykh. On Pierce stalks of semirings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 2, pp. 171-186. http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a8/

[1] Bredon G., Teoriya puchkov, Nauka, M., 1988 | MR | Zbl

[2] Vechtomov E. M., Mikhalëv A. V., Chermnykh V. V., “Abelevo regulyarnye polozhitelnye polukoltsa”, Tr. seminara im. I. G. Petrovskogo, 20, 1997, 282–309 | Zbl

[3] Lambek I., Koltsa i moduli, Mir, M., 1971 | MR | Zbl

[4] Markov R. V., Chermnykh V. V., “Pirsovskie tsepi polukolets”, Vestn. Syktyvkarskogo un-ta. Ser. 1, 2012, no. 16, 88–103 | Zbl

[5] Tuganbaev A. A., Teoriya kolets. Arifmeticheskie moduli i koltsa, MTsNMO, M., 2009

[6] Tyukavkin D. V., Pirsovskie puchki dlya kolets s involyutsiei, Dep. v VINITI No 4346-82, MGU, M., 1982, 64 pp.

[7] Chermnykh V. V., “Puchkovye predstavleniya polukolets”, Uspekhi mat. nauk, 48:5 (1993), 185–186 | MR | Zbl

[8] Chermnykh V. V., “Funktsionalnye predstavleniya polukolets”, Fundament. i prikl. mat., 17:3 (2011/2012), 111–227 | MR

[9] Burgess W. D., Stephenson W., “Pierce sheaves of non-commutative rings”, Commun. Algebra, 39 (1976), 512–526 | DOI | MR

[10] Burgess W. D., Stephenson W., “An analogue of the Pierce sheaf for non-commutative rings”, Commun. Algebra, 6:9 (1978), 863–886 | DOI | MR | Zbl

[11] Burgess W. D., Stephenson W., “Rings all of whose Pierce stalks are local”, Can. Math. Bull., 22:2 (1979), 159–164 | DOI | MR | Zbl

[12] Carson A. B., “Representation of regular rinds of finite index”, J. Algebra, 39:2 (1976), 512–526 | DOI | MR | Zbl

[13] Cignoli R., “The lattice of global sections of sheaves of chains over Boolean spaces”, Algebra Universalis, 8:3 (1978), 357–373 | DOI | MR | Zbl

[14] Comer S. D., “Representation by algebras of sections over Boolean spaces”, Pacific. Math., 38 (1971), 29–38 | DOI | MR | Zbl

[15] Cornish W. H., “$0$-ideals, congruences and sheaf representations of distributive lattices”, Rev. Roum. Math. Pures Appl., 22:8 (1977), 200–215 | MR

[16] Dauns J., Hofmann K. H., “The representation of biregular rings by sheaves”, Math. Z., 91:2 (1966), 103–123 | DOI | MR | Zbl

[17] Georgescu G., “Pierce representations of distributive lattices”, Kobe J. Math., 10:1 (1993), 1–11 | MR | Zbl

[18] Keimel K., “The representation of lattice ordered groups and rings by sections in sheaves”, Lectures on the Applications of Sheaves to Ring Theory, Lect. Notes Math., 248, Springer, Berlin, 1971, 2–96 | MR

[19] Pierce R. S., “Modules over commutative regular rings”, Mem. Amer. Math. Soc., 70 (1967), 1–112 | MR

[20] Szeto G., “The sheaf representation of near-rings and its applications”, Commun. Algebra, 5:7 (1977), 773–782 | DOI | MR | Zbl