Bases and dimension of vector spaces over lattices
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 2, pp. 151-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we give a consistent presentation of dimension properties and properties of bases for vector spaces over distributive lattices. The bases consisting of join irreducible vectors are studied and their uniqueness is proved. Criteria for the following are proved: the set of join irreducible vectors is a generating set for a vector space; this set is a vector space basis; all bases contain the same number of vectors. A criterion of uniqueness for the basis is proved. The basis containing the greatest number of vectors is found. We give a description for all standard bases of a vector space. We prove a theorem allowing one to calculate the space dimension and to find the basis of the smallest number of vectors by known algorithms. These results are applied to vector spaces over chains: we prove that there exists a standard basis, that the basis of join irreducible vectors is the standard basis, that a standard basis is unique. We calculate the dimension of the arithmetic space and describe all bases containing the smallest number of vectors. It is proved that all such bases are standard.
@article{FPM_2014_19_2_a7,
     author = {E. E. Marenich and V. E. Marenich},
     title = {Bases and dimension of vector spaces over lattices},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {151--169},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a7/}
}
TY  - JOUR
AU  - E. E. Marenich
AU  - V. E. Marenich
TI  - Bases and dimension of vector spaces over lattices
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 151
EP  - 169
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a7/
LA  - ru
ID  - FPM_2014_19_2_a7
ER  - 
%0 Journal Article
%A E. E. Marenich
%A V. E. Marenich
%T Bases and dimension of vector spaces over lattices
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 151-169
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a7/
%G ru
%F FPM_2014_19_2_a7
E. E. Marenich; V. E. Marenich. Bases and dimension of vector spaces over lattices. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 2, pp. 151-169. http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a7/

[1] Skornyakov L. A., “Obratimye matritsy nad distributivnymi strukturami”, Sib. mat. zhurn., 27:2 (1986), 182–185 | MR | Zbl

[2] Giveon J., “Lattice matrices”, Inform. Control, 7 (1964), 477–484 | DOI | MR | Zbl

[3] Kim K. H., Boolean Matrix Theory and Applications, Marcel Dekker, 1982 | MR | Zbl

[4] Kim K. H., Roush F. W., “Generalized fuzzy matrices”, Fuzzy Sets Syst., 4:3 (1980), 293–315 | DOI | MR | Zbl

[5] Kim K. H., Roush F. W., Idempotent fuzzy matrices: Seminar report, Alabama State Univ., Montgomery, 1981

[6] Lin L., Jiang Y., “The computation of hitting sets: review and new algorithms”, Inform. Process. Lett., 86 (2003), 177–184 | DOI | MR | Zbl

[7] Wotawa W., “A variant of Reiter's hitting-set algorithm”, Inform. Process. Lett., 79 (2001), 45–51 | DOI | MR | Zbl