On strong indecomposability of the Dedekind ring localization
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 2, pp. 43-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we study the question of sufficient conditions for strong indecomposability of Dedekind rings as finite rank modules over their Dedekind subrings. This question was considered earlier in the special case of rings of algebraic integers. Necessary and sufficient conditions are given for Galois extensions. The question of $k$-indecomposability is also considered.
@article{FPM_2014_19_2_a3,
     author = {A. V. Grishin},
     title = {On strong indecomposability of the {Dedekind} ring localization},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {43--49},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a3/}
}
TY  - JOUR
AU  - A. V. Grishin
TI  - On strong indecomposability of the Dedekind ring localization
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 43
EP  - 49
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a3/
LA  - ru
ID  - FPM_2014_19_2_a3
ER  - 
%0 Journal Article
%A A. V. Grishin
%T On strong indecomposability of the Dedekind ring localization
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 43-49
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a3/
%G ru
%F FPM_2014_19_2_a3
A. V. Grishin. On strong indecomposability of the Dedekind ring localization. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 2, pp. 43-49. http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a3/

[1] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1985 | MR | Zbl

[2] Leng S., Algebraicheskie chisla, Mir, M., 1966 | MR

[3] Eisenbud D., Commutative Algebra with a View Towards Algebraic Geometry, Grad. Texts Math., 150, Springer, Berlin, 1995 | DOI | MR | Zbl

[4] Grishin A. V., “Strongly indecomposable localizations of the ring of algebraic integers”, Commun. Algebra, 43:7 (2015) (to appear)

[5] Lang S., Algebra, Grad. Texts Math., 211, Springer, Berlin, 2002 | DOI | MR