Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2014_19_2_a2, author = {A. V. Gribov and A. V. Mikhalev}, title = {Prime radical of loops and $\Omega${-loops.~I}}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {25--42}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a2/} }
A. V. Gribov; A. V. Mikhalev. Prime radical of loops and $\Omega$-loops.~I. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 2, pp. 25-42. http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a2/
[1] Belousov V. D., Osnovy teorii kvazigrupp i lup, Nauka, M., 1967 | MR | Zbl
[2] Belyavskaya G. B., “Assotsiatory, kommutatory i lineinost kvazigrupp”, Diskret. mat., 4:7 (1995), 116–125 | MR | Zbl
[3] Kurosh A. G., “Radikaly kolets i algebr”, Mat. sb., 33(75):1 (1953), 13–26 | MR | Zbl
[4] Kurosh A. G., Lektsii po obschei algebre, Nauka, M., 1973
[5] Kurosh A. G., Chernikov S. N., “Razreshimye i nilpotentnye gruppy”, Uspekhi mat. nauk, 2:3 (1947), 18–59 | MR
[6] Mikhalëv A. V., Balaba I. N., Pikhtilkov S. A., “Pervichnyi radikal graduirovannoi $\Omega$-gruppy”, Fundament. i prikl. mat., 12:2 (2006), 159–174 | MR | Zbl
[7] Mikhalëv A. V., Shatalova M. A., “Pervichnyi radikal $\Omega$-grupp i $\Omega$-$l$-grupp”, Fundament. i prikl. mat., 4:4 (1998), 1405–1413 | MR | Zbl
[8] Schukin K. K., “$RI^*$-razreshimyi radikal grupp”, Mat. sb., 52(94):4 (1960), 1021–1031 | MR | Zbl
[9] Amitsur S., “A general theory of radicals. II. Radicals in rings and bicategories”, Amer. J. Math., 76:1 (1954), 100–125 | DOI | MR | Zbl
[10] Brown B., McCoy N., “Some theorems on groups with applications to ring theory”, Trans. Am. Math. Soc., 69 (1950), 302–311 | DOI | MR | Zbl
[11] Bruck R., A Survey of Binary Systems, Springer, Berlin, 1958 | MR | Zbl
[12] Buys A., Gerber G. K., “The prime radical for $\Omega$-groups”, Commun. Algebra, 10 (1982), 1089–1099 | DOI | MR | Zbl
[13] Higgins P. J., “Groups with multiple operators”, Proc. London Math. Soc., 3:6 (1956), 366–416 | DOI | MR | Zbl
[14] McKenzie R., Snow J., “Congruence modular varieties commutator theory and its uses”, Structural Theory of Automata, Semigroups and Universal Algebras, Nato Sci. Ser. II, 207, Springer, Berlin, 2005, 273–329 | MR
[15] Pflugfelder H., Quasigroups and Loops: Introduction, Sigma Ser. Pure Math., 7, Heldermann, 1991 | MR
[16] Smith J., “On the nilpotence class of commutative Moufang loops”, Math. Proc. Cambridge Philos. Soc., 84:3 (1978), 387–404 | DOI | MR | Zbl
[17] Stanovsky D., Vojtechovsky P., “Commutator theory for loops”, J. Algebra, 399 (2014), 290–322 | DOI | MR | Zbl