Prime radical of loops and $\Omega$-loops.~I
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 2, pp. 25-42
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, main properties of a commutator of two normal subloops of a loop are considered. The notion of a prime radical of loops is introduced and its characterization as a set of strongly Engel elements is given. Also an $\Omega$-prime radical of $\Omega$-loops is defined and its elementwise characterization is given.
@article{FPM_2014_19_2_a2,
author = {A. V. Gribov and A. V. Mikhalev},
title = {Prime radical of loops and $\Omega${-loops.~I}},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {25--42},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a2/}
}
A. V. Gribov; A. V. Mikhalev. Prime radical of loops and $\Omega$-loops.~I. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 2, pp. 25-42. http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a2/