Prime radical of loops and $\Omega$-loops.~I
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 2, pp. 25-42

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, main properties of a commutator of two normal subloops of a loop are considered. The notion of a prime radical of loops is introduced and its characterization as a set of strongly Engel elements is given. Also an $\Omega$-prime radical of $\Omega$-loops is defined and its elementwise characterization is given.
@article{FPM_2014_19_2_a2,
     author = {A. V. Gribov and A. V. Mikhalev},
     title = {Prime radical of loops and $\Omega${-loops.~I}},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {25--42},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a2/}
}
TY  - JOUR
AU  - A. V. Gribov
AU  - A. V. Mikhalev
TI  - Prime radical of loops and $\Omega$-loops.~I
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 25
EP  - 42
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a2/
LA  - ru
ID  - FPM_2014_19_2_a2
ER  - 
%0 Journal Article
%A A. V. Gribov
%A A. V. Mikhalev
%T Prime radical of loops and $\Omega$-loops.~I
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 25-42
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a2/
%G ru
%F FPM_2014_19_2_a2
A. V. Gribov; A. V. Mikhalev. Prime radical of loops and $\Omega$-loops.~I. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 2, pp. 25-42. http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a2/