Rolling simplexes and their commensurability.~II (a~lemma on the directrix and focus)
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 1, pp. 13-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

The law of central-square dynamics $$ (x,y,z)''=-\frac{4\pi^2k}{(\alpha(x-a)+\beta(y-b)+\gamma(z-c)+\delta)^2}(x-a,y-b,z-c), $$ expressing the focusing of a plane wave at the point $(a,b,c)$ is discussed and justified.
@article{FPM_2014_19_1_a1,
     author = {O. V. Gerasimova},
     title = {Rolling simplexes and their {commensurability.~II} (a~lemma on the directrix and focus)},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {13--19},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_1_a1/}
}
TY  - JOUR
AU  - O. V. Gerasimova
TI  - Rolling simplexes and their commensurability.~II (a~lemma on the directrix and focus)
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 13
EP  - 19
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_1_a1/
LA  - ru
ID  - FPM_2014_19_1_a1
ER  - 
%0 Journal Article
%A O. V. Gerasimova
%T Rolling simplexes and their commensurability.~II (a~lemma on the directrix and focus)
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 13-19
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_1_a1/
%G ru
%F FPM_2014_19_1_a1
O. V. Gerasimova. Rolling simplexes and their commensurability.~II (a~lemma on the directrix and focus). Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 1, pp. 13-19. http://geodesic.mathdoc.fr/item/FPM_2014_19_1_a1/

[1] Gerasimova O. V., “Rolling simplexes and their commensurability. I (aksioma i kriterii neszhimaemosti i lemma o momente)”, Fundament. i prikl. mat., 17:2 (2011/2012), 87–95

[2] Razmyslov Yu. P., “Raz'yasnenie k “Rolling simplexes and their commensurability” (uravneniya polya po Tikho Brage)”, Fundament. i prikl. mat., 17:4 (2011/2012), 193–215 | MR