On the Belyi functions of planar circular maps
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 6, pp. 111-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

A map $(S,G)$ is a closed Riemann surface $S$ with an embedded graph $G$ such that $S\setminus G$ amounts to the disjoint union of connected components, called faces, each of which is homeomorphic to an open disk. The purpose of this article is to demonstrate a method of finding a Belyi function for planar circular maps and a way to plot a planar circular map by its Belyi function. Also we present a list of planar circular maps with the number of edges not exceeding five, their Belyi functions and their plots. We remark that the Belyi function for a planar circular map with $E$ edges obtained with the help of our method is a rational function of degree $E$.
@article{FPM_2013_18_6_a6,
     author = {M. A. Deryagina and A. D. Mednykh},
     title = {On the {Belyi} functions of planar circular maps},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {111--133},
     publisher = {mathdoc},
     volume = {18},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a6/}
}
TY  - JOUR
AU  - M. A. Deryagina
AU  - A. D. Mednykh
TI  - On the Belyi functions of planar circular maps
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 111
EP  - 133
VL  - 18
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a6/
LA  - ru
ID  - FPM_2013_18_6_a6
ER  - 
%0 Journal Article
%A M. A. Deryagina
%A A. D. Mednykh
%T On the Belyi functions of planar circular maps
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 111-133
%V 18
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a6/
%G ru
%F FPM_2013_18_6_a6
M. A. Deryagina; A. D. Mednykh. On the Belyi functions of planar circular maps. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 6, pp. 111-133. http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a6/

[1] Adrianov H. M., Amburg N. Ya., Drëmov V. A., Kochetkov Yu. Yu., Kreines E. M., Levitskaya Yu. A., Nasretdinova V. F., Shabat G. B., “Katalog funktsii Belogo detskikh risunkov s ne bolee chem chetyrmya rëbrami”, Fundament. i prikl. mat., 13:6 (2007), 35–112 | MR

[2] Belyi G. V., “O rasshireniyakh Galua maksimalnogo krugovogo polya”, Izv. AN SSSR. Ser. mat., 43:2 (1979), 267–276 | MR | Zbl

[3] Bychkov B. S., Drëmov V. A., Epifanov E. M., “Vychislenie par Belogo shestirëbernykh risunkov roda $3$ s gruppami avtomorfizmov poryadkov $12$ i $3$”, Fundament. i prikl. mat., 13:6 (2007), 137–148 | MR | Zbl

[4] Deryagina M. A., Mednykh A. D., “O podschëte krugovykh kart s zadannym chislo rëber”, Sib. mat. zhurn., 54:4 (2013), 788–806 | MR | Zbl

[5] Jackson D. M., Visentin T. I., An Atlas of the Smaller Maps in Orientable and Nonorientable Surfaces, Chapman Hall/CRC Press, 2001 | MR | Zbl

[6] Shabat G. B., Zvonkin A. K., “Plane trees and algebraic numbers”, Jerusalem Combinatorics' 93, Contemp. Math., 178, eds. H. Barcelo, G. Kalai, Amer. Math. Soc., 1994, 233–275 | DOI | MR | Zbl