The computation of Belyi pairs of $6$-edged dessins d'enfants of genus~$3$ with symmetries of order~$2$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 6, pp. 77-89

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we present all six-edged dessins d'enfants of genus $3$ with only one vertex that have a symmetry of order $2$. For each of them the Belyi pair is computed.
@article{FPM_2013_18_6_a3,
     author = {B. S. Bychkov and V. A. Dremov and E. M. Epifanov},
     title = {The computation of {Belyi} pairs of $6$-edged dessins d'enfants of genus~$3$ with symmetries of order~$2$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {77--89},
     publisher = {mathdoc},
     volume = {18},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a3/}
}
TY  - JOUR
AU  - B. S. Bychkov
AU  - V. A. Dremov
AU  - E. M. Epifanov
TI  - The computation of Belyi pairs of $6$-edged dessins d'enfants of genus~$3$ with symmetries of order~$2$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 77
EP  - 89
VL  - 18
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a3/
LA  - ru
ID  - FPM_2013_18_6_a3
ER  - 
%0 Journal Article
%A B. S. Bychkov
%A V. A. Dremov
%A E. M. Epifanov
%T The computation of Belyi pairs of $6$-edged dessins d'enfants of genus~$3$ with symmetries of order~$2$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 77-89
%V 18
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a3/
%G ru
%F FPM_2013_18_6_a3
B. S. Bychkov; V. A. Dremov; E. M. Epifanov. The computation of Belyi pairs of $6$-edged dessins d'enfants of genus~$3$ with symmetries of order~$2$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 6, pp. 77-89. http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a3/