The computation of Belyi pairs of $6$-edged dessins d'enfants of genus~$3$ with symmetries of order~$2$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 6, pp. 77-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we present all six-edged dessins d'enfants of genus $3$ with only one vertex that have a symmetry of order $2$. For each of them the Belyi pair is computed.
@article{FPM_2013_18_6_a3,
     author = {B. S. Bychkov and V. A. Dremov and E. M. Epifanov},
     title = {The computation of {Belyi} pairs of $6$-edged dessins d'enfants of genus~$3$ with symmetries of order~$2$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {77--89},
     publisher = {mathdoc},
     volume = {18},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a3/}
}
TY  - JOUR
AU  - B. S. Bychkov
AU  - V. A. Dremov
AU  - E. M. Epifanov
TI  - The computation of Belyi pairs of $6$-edged dessins d'enfants of genus~$3$ with symmetries of order~$2$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 77
EP  - 89
VL  - 18
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a3/
LA  - ru
ID  - FPM_2013_18_6_a3
ER  - 
%0 Journal Article
%A B. S. Bychkov
%A V. A. Dremov
%A E. M. Epifanov
%T The computation of Belyi pairs of $6$-edged dessins d'enfants of genus~$3$ with symmetries of order~$2$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 77-89
%V 18
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a3/
%G ru
%F FPM_2013_18_6_a3
B. S. Bychkov; V. A. Dremov; E. M. Epifanov. The computation of Belyi pairs of $6$-edged dessins d'enfants of genus~$3$ with symmetries of order~$2$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 6, pp. 77-89. http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a3/

[1] Adrianov N. M., “Klassifikatsiya primitivnykh grupp vraschenii ploskikh rëber”, Fundament. i prikl. mat., 3:4 (1997), 1069–1083 | MR | Zbl

[2] Amburg N. Ya., Simmetrii grafov na poverkhnostyakh i algebraicheskie krivye, Dis. $\dots$ kand. fiz.-mat. nauk, M., 2005

[3] Bychkov B. S., Epifanov E. M., Drëmov V. A., “Vychislenie par Belogo shestirëbernykh risunkov roda $3$ s gruppami avtomorfizmov poryadkov $12$ i $3$”, Fundament. i prikl. mat., 13:6 (2007), 137–148 | MR | Zbl

[4] Epifanov E. M., Shestirëbernye risunki roda $3$ s edinstvennoi vershinoi, Diplomnaya rabota, M., 2006

[5] Kochetkov Yu. Yu., Spisok skleek roda $3$ s edinstvennoi vershinoi, Preprint, 2007

[6] Mischenko A. S., Fomenko A. T., Kurs differentsialnoi geometrii i topologii, Faktorial Press, M., 2000

[7] Shabat G. B., Kombinatorno-topologicheskie metody v teorii algebraicheskikh krivykh, Dis. $\dots$ dokt. fiz.-mat. nauk, M., 1998

[8] Betrema J., Pere D., Zvonkin A., “Plane trees and their Shabat polynomials”, Discrete Math., 153:1–3 (1996), 47–58 | DOI | MR | Zbl

[9] Lando S. K., Zvonkin A. K., Graphs on Surfaces and Their Application, Springer, Berlin, 2004 | MR | Zbl

[10] Shabat G. B., Voevodsky V. A., “Drawing curves over number fields”, The Grothendieck Festschrift, Birkhäuser, Basel, 1990, 199–227 | DOI | MR | Zbl