The computation of Belyi pairs of $6$-edged dessins d'enfants of genus~$3$ with symmetries of order~$2$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 6, pp. 77-89
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article, we present all six-edged dessins d'enfants of genus $3$ with only one vertex that have a symmetry of order $2$. For each of them the Belyi pair is computed.
@article{FPM_2013_18_6_a3,
author = {B. S. Bychkov and V. A. Dremov and E. M. Epifanov},
title = {The computation of {Belyi} pairs of $6$-edged dessins d'enfants of genus~$3$ with symmetries of order~$2$},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {77--89},
publisher = {mathdoc},
volume = {18},
number = {6},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a3/}
}
TY - JOUR AU - B. S. Bychkov AU - V. A. Dremov AU - E. M. Epifanov TI - The computation of Belyi pairs of $6$-edged dessins d'enfants of genus~$3$ with symmetries of order~$2$ JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2013 SP - 77 EP - 89 VL - 18 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a3/ LA - ru ID - FPM_2013_18_6_a3 ER -
%0 Journal Article %A B. S. Bychkov %A V. A. Dremov %A E. M. Epifanov %T The computation of Belyi pairs of $6$-edged dessins d'enfants of genus~$3$ with symmetries of order~$2$ %J Fundamentalʹnaâ i prikladnaâ matematika %D 2013 %P 77-89 %V 18 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a3/ %G ru %F FPM_2013_18_6_a3
B. S. Bychkov; V. A. Dremov; E. M. Epifanov. The computation of Belyi pairs of $6$-edged dessins d'enfants of genus~$3$ with symmetries of order~$2$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 6, pp. 77-89. http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a3/