@article{FPM_2013_18_6_a11,
author = {D. A. Oganesyan},
title = {Rational functions with two critical points of maximum multiplicity},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {185--208},
year = {2013},
volume = {18},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a11/}
}
D. A. Oganesyan. Rational functions with two critical points of maximum multiplicity. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 6, pp. 185-208. http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a11/
[1] Beiker Dzh., Greivs-Morris P., Approksimatsii Pade, Mir, M., 1986 | MR
[2] Zvonkin A. K., Lando S. K., Grafy na poverkhnostyakh i ikh prilozheniya, Izd-vo MTsNMO, M., 2010
[3] Leng C., Vvedenie v teoriyu modulyarnykh form, Mir, M., 1979 | MR
[4] Shabat G. B., Kombinatorno-topologicheskie metody v teorii algebraicheskikh krivykh, Dis. $\dots$ dokt. fiz.-mat. nauk, M., 1998
[5] Abel N. H., “Über die Integration der Differential-Formel $\rho\,dx/\sqrt R$, wenn $R$ und $\rho$ ganze Funktionen sind”, J. Reine Angew. Math., 1 (1826), 185–221 | DOI | Zbl
[6] Pakovitch F. B., “Combinatoire des arbres planaires et arithmetique des courbes hyperelliptiques”, Ann. Inst. Fourier, 48:2 (1998), 323–351 | DOI | MR | Zbl
[7] Zapponi L., Lame curves with bad reduction, Preprint, 2006