Rational functions with two critical points of maximum multiplicity
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 6, pp. 185-208.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the functions on algebraic curves whose divisors have the form $nA-nC$. Combinatorial-topological and algebraic descriptions are introduced for exploring such functions. All Belyi functions with such divisor are described. The case of curves of genus 1 is considered in more detail. The number of Belyi functions with divisor $nA-nC$ is explicitly calculated. For general functions of this type on a curve of genus 1, we consider the space of the parameters and a method of its calculation that uses the Padé approximation.
@article{FPM_2013_18_6_a11,
     author = {D. A. Oganesyan},
     title = {Rational functions with two critical points of maximum multiplicity},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {185--208},
     publisher = {mathdoc},
     volume = {18},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a11/}
}
TY  - JOUR
AU  - D. A. Oganesyan
TI  - Rational functions with two critical points of maximum multiplicity
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 185
EP  - 208
VL  - 18
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a11/
LA  - ru
ID  - FPM_2013_18_6_a11
ER  - 
%0 Journal Article
%A D. A. Oganesyan
%T Rational functions with two critical points of maximum multiplicity
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 185-208
%V 18
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a11/
%G ru
%F FPM_2013_18_6_a11
D. A. Oganesyan. Rational functions with two critical points of maximum multiplicity. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 6, pp. 185-208. http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a11/

[1] Beiker Dzh., Greivs-Morris P., Approksimatsii Pade, Mir, M., 1986 | MR

[2] Zvonkin A. K., Lando S. K., Grafy na poverkhnostyakh i ikh prilozheniya, Izd-vo MTsNMO, M., 2010

[3] Leng C., Vvedenie v teoriyu modulyarnykh form, Mir, M., 1979 | MR

[4] Shabat G. B., Kombinatorno-topologicheskie metody v teorii algebraicheskikh krivykh, Dis. $\dots$ dokt. fiz.-mat. nauk, M., 1998

[5] Abel N. H., “Über die Integration der Differential-Formel $\rho\,dx/\sqrt R$, wenn $R$ und $\rho$ ganze Funktionen sind”, J. Reine Angew. Math., 1 (1826), 185–221 | DOI | Zbl

[6] Pakovitch F. B., “Combinatoire des arbres planaires et arithmetique des courbes hyperelliptiques”, Ann. Inst. Fourier, 48:2 (1998), 323–351 | DOI | MR | Zbl

[7] Zapponi L., Lame curves with bad reduction, Preprint, 2006