Enumeration of one class of plane weighted trees
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 6, pp. 171-184.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present an enumeration formula for weighted trees, i.e., trees where vertices and edges have weights (a weight is a positive integer) and the weight of each vertex is equal to the sum of the weights of the edges incident to it. Each tree has a binary structure: we can color its vertices in two colors, black and white, so that adjacent vertices have different colors. In this work, the following problem is considered: enumerate weighted plane trees with given sets of weights of black and white vertices.
@article{FPM_2013_18_6_a10,
     author = {Yu. Yu. Kochetkov},
     title = {Enumeration of one class of plane weighted trees},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {171--184},
     publisher = {mathdoc},
     volume = {18},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a10/}
}
TY  - JOUR
AU  - Yu. Yu. Kochetkov
TI  - Enumeration of one class of plane weighted trees
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 171
EP  - 184
VL  - 18
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a10/
LA  - ru
ID  - FPM_2013_18_6_a10
ER  - 
%0 Journal Article
%A Yu. Yu. Kochetkov
%T Enumeration of one class of plane weighted trees
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 171-184
%V 18
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a10/
%G ru
%F FPM_2013_18_6_a10
Yu. Yu. Kochetkov. Enumeration of one class of plane weighted trees. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 6, pp. 171-184. http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a10/

[1] Drëmov V. A., Algebraicheskaya teoriya par Belogo, Dis. $\dots$ kand. fiz.-mat. nauk, MGU, M., 2012

[2] Kochetkov Yu. Yu., “Antivandermondovy sistemy i ploskie derevya”, Funkts. anal. i ego pril., 36:3 (2002), 83–87 | DOI | MR | Zbl

[3] Zvonkin A., Pakovich F., Minimum degree of the difference of two polynomials over $\mathbb Q$ and weighted plane trees, arXiv: 1306.4141