Well-posedness of approximation and optimization problems for weakly convex sets and functions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 5, pp. 89-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the class of weakly convex sets with respect to a quasiball in a Banach space. This class generalizes the classes of sets with positive reach, proximal smooth sets and prox-regular sets. We prove the well-posedness of the closest points problem of two sets, one of which is weakly convex with respect to a quasiball $M$, and the other one is a summand of the quasiball $-rM$, where $r\in(0,1)$. We show that if a quasiball $B$ is a summand of a quasiball $M$, then a set that is weakly convex with respect to the quasiball $M$ is also weakly convex with respect to the quasiball $B$. We consider the class of weakly convex functions with respect to a given convex continuous function $\gamma$ that consists of functions whose epigraphs are weakly convex sets with respect to the epigraph of $\gamma$. We obtain a sufficient condition for the well-posedness of the infimal convolution problem, and also a sufficient condition for the existence, uniqueness, and continuous dependence on parameters of the minimizer.
@article{FPM_2013_18_5_a4,
     author = {G. E. Ivanov and M. S. Lopushanski},
     title = {Well-posedness of approximation and optimization problems for weakly convex sets and functions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {89--118},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a4/}
}
TY  - JOUR
AU  - G. E. Ivanov
AU  - M. S. Lopushanski
TI  - Well-posedness of approximation and optimization problems for weakly convex sets and functions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 89
EP  - 118
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a4/
LA  - ru
ID  - FPM_2013_18_5_a4
ER  - 
%0 Journal Article
%A G. E. Ivanov
%A M. S. Lopushanski
%T Well-posedness of approximation and optimization problems for weakly convex sets and functions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 89-118
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a4/
%G ru
%F FPM_2013_18_5_a4
G. E. Ivanov; M. S. Lopushanski. Well-posedness of approximation and optimization problems for weakly convex sets and functions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 5, pp. 89-118. http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a4/

[1] Alimov A. R., Karlov M. I., “Mnozhestva s vneshnim chebyshëvskim sloem”, Mat. zametki, 69:2 (2001), 303–307 | DOI | MR | Zbl

[2] Balashov M. V., Ivanov G. E., “Slabo vypuklye i proksimalno gladkie mnozhestva v banakhovykh prostranstvakh”, Izv. RAN. Ser. mat., 73:3 (2009), 23–66 | DOI | MR | Zbl

[3] Ivanov G. E., Slabo vypuklye mnozhestva i funktsii: teoriya i prilozheniya, Fizmatlit, M., 2006

[4] Ivanov G. E., “Kriterii gladkikh porozhdayuschikh mnozhestv”, Mat. sb., 198:3 (2007), 51–76 | DOI | MR | Zbl

[5] Ivanov G. E., Lopushanski M. S., “Approksimativnye svoistva slabo vypuklykh mnozhestv v prostranstvakh s nesimmetrichnoi polunormoi”, Tr. MFTI, 4:4 (2012), 94–104

[6] Levitin E. S., Polyak B. T., “Metody minimizatsii pri nalichii ogranichenii”, ZhVM i MF, 6:5 (1966), 787–823 | MR | Zbl

[7] Polovinkin E. S., Balashov M. V., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2007 | Zbl

[8] Balashov M. V., Repovš D., “Uniform convexity and the splitting problem for selections”, J. Math. Anal. Appl., 360:1 (2009), 307–316 | DOI | MR | Zbl

[9] Bernard F., Thibault L., Zlateva N., “Characterization of proximal regular sets in super reflexive Banach spaces”, J. Convex Anal., 13 (2006), 525–559 | MR | Zbl

[10] Bernard F., Thibault L., Zlateva N., “Prox-regular sets and epigraphs in uniformly convex Banach spaces: Various regularities and other properties”, Trans. Am. Math. Soc., 363 (2011), 2211–2247 | DOI | MR | Zbl

[11] Clarke F. H., Stern R. J., Wolenski P. R., “Proximal smoothness and lower-$C^2$ property”, J. Convex Anal., 2 (1995), 117–144 | MR | Zbl

[12] Clarkson J. A., “Uniformly convex spaces”, Trans. Am. Math. Soc., 40 (1936), 396–414 | DOI | MR | Zbl

[13] Colombo G., Goncharov V. V., Mordukhovich B. S., “Well-posedness of minimal time problems with constant dynamics in Banach spaces”, Set-Valued Var. Anal., 18:3–4 (2010), 349–372 | DOI | MR | Zbl

[14] Federer H., “Curvature measures”, Trans. Am. Math. Soc., 93 (1959), 418–491 | DOI | MR | Zbl

[15] Fenchel W., Convex Cones, Sets and Functions, Mimeographed Lect. Notes, Princeton Univ., Princeton, 1951

[16] Goncharov V. V., Pereira F. F., “Neighbourhood retractions of nonconvex sets in a Hilbert space via sublinear functionals”, J. Convex Anal., 18 (2011), 1–36 | MR | Zbl

[17] Goncharov V. V., Pereira F. F., “Geometric conditions for regularity in a time-minimum problem with constant dynamics”, J. Convex Anal., 19 (2012), 631–669 | MR | Zbl

[18] Ivanov G. E., “On well posed best approximation problems for a nonsymmetric seminorm”, J. Convex Anal., 20:2 (2013), 501–529 | MR | Zbl

[19] Ivanov G. E., “Weak convexity of sets and functions in a Banach space”, J. Convex Anal. (to appear)

[20] Janin R., Sur la dualité et la sensibilité dans les problèmes de programmation mathématique, Thèse de Doctorat ès-Sciences Mathématiques, Université de Paris, 1974 | Zbl

[21] Moreau J. J., “Proximité et dualité dans un espace hilbertien”, Bull. Soc. Math. Fr., 93 (1965), 273–299 | MR | Zbl

[22] Poliquin R. A., Rockafellar R. T., Thibault L., “Local differentiability of distance functions”, Trans. Am. Math. Soc., 352 (2000), 5231–5249 | DOI | MR | Zbl

[23] Rockafellar R. T., Convex Analysis, Princeton, 1970 | MR

[24] Rockafellar R. T., “Favorable classes of Lipschitz continuous functions in subgradient optimization”, Progress in Nondifferentiable Optimization, IIASA Collaborative Proc. Ser., ed. E. Nurminski, Int. Inst. Appl. Systems Anal., Laxenburg, Austria, 1982, 125–144 | MR

[25] Vial J.-P., “Strong and weak convexity of sets and functions”, Math. Oper. Res., 8 (1983), 231–259 | DOI | MR | Zbl

[26] Yosida K., Functional Analysis, Springer, Berlin, 1964