Weighted integrability of double series with respect to multiplicative systems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 5, pp. 69-87
Voir la notice de l'article provenant de la source Math-Net.Ru
Necessary and sufficient conditions for $L^p$-integrability with power weight of a function $f$ represented by the double series with respect to a multiplicative system with generalized monotone coefficients are obtained. These conditions are given in terms of the coefficients or their second mixed differences. In addition, the integrability of the difference quotient $(f(x,y)-f(x,0)-f(0,y)+f(0,0))/(xy)$ is studied.
@article{FPM_2013_18_5_a3,
author = {S. S. Volosivets and R. N. Fadeev},
title = {Weighted integrability of double series with respect to multiplicative systems},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {69--87},
publisher = {mathdoc},
volume = {18},
number = {5},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a3/}
}
TY - JOUR AU - S. S. Volosivets AU - R. N. Fadeev TI - Weighted integrability of double series with respect to multiplicative systems JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2013 SP - 69 EP - 87 VL - 18 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a3/ LA - ru ID - FPM_2013_18_5_a3 ER -
S. S. Volosivets; R. N. Fadeev. Weighted integrability of double series with respect to multiplicative systems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 5, pp. 69-87. http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a3/