Series formed by the moduli of blocks of terms of trigonometric series. A~survey
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 5, pp. 209-216.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents a survey of results on properties of series composed of the moduli of blocks of trigonometric series. The following questions are addressed: convergence, uniform convergence, and membership of the sum of series to $L_p$ and to weighted $L_p$ spaces. First results in this area pertaining to similar series for the Walsh system are put forward.
@article{FPM_2013_18_5_a11,
     author = {S. A. Telyakovskii},
     title = {Series formed by the moduli of blocks of terms of trigonometric series. {A~survey}},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {209--216},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a11/}
}
TY  - JOUR
AU  - S. A. Telyakovskii
TI  - Series formed by the moduli of blocks of terms of trigonometric series. A~survey
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 209
EP  - 216
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a11/
LA  - ru
ID  - FPM_2013_18_5_a11
ER  - 
%0 Journal Article
%A S. A. Telyakovskii
%T Series formed by the moduli of blocks of terms of trigonometric series. A~survey
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 209-216
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a11/
%G ru
%F FPM_2013_18_5_a11
S. A. Telyakovskii. Series formed by the moduli of blocks of terms of trigonometric series. A~survey. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 5, pp. 209-216. http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a11/

[1] Belov A. S., “O summakh modulei chlenov sgruppirovannogo trigonometricheskogo ryada s monotonnymi koeffitsientami”, Vestn. Ivanov. gos. un-ta. Ser. “Biologiya, khimiya, fizika, matematika”, 2006, no. 3, 107–121

[2] Belov A. S., “O svoistvakh summy modulei chlenov sgruppirovannogo trigonometricheskogo ryada”, Mat. sb., 203:6 (2012), 35–62 | DOI | MR | Zbl

[3] Belov A. S., Telyakovskii S. A., “Usilenie teorem Dirikhle–Zhordana i Yanga o ryadakh Fure funktsii ogranichennoi variatsii”, Mat. sb., 198:6 (2007), 25–40 | DOI | MR | Zbl

[4] Zastavnyi V. P., “Otsenki summ iz modulei blokov trigonometricheskikh ryadov Fure”, Tr. In-ta mat. i mekh. UrO RAN, 16, no. 4, 2010, 166–179

[5] Telyakovskii S. A., “O chastnykh summakh ryadov Fure funktsii ogranichennoi variatsii”, Tr. MIAN, 219, 1997, 378–386 | MR | Zbl

[6] Telyakovskii S. A., “O ravnomernoi skhodimosti ryadov Fure funktsii ogranichennoi variatsii”, Tr. MIAN, 232, 2001, 318–326 | MR | Zbl

[7] Telyakovskii S. A., “Nekotorye svoistva ryadov Fure funktsii ogranichennoi variatsii. II”, Tr. In-ta mat. i mekh. UrO RAN, 11, no. 2, 2005, 168–174 | MR | Zbl

[8] Telyakovskii S. A., “O svoistvakh blokov chlenov ryada $\sum\frac1k\sin kx$”, Ukr. mat. zhurn., 64:5 (2012), 713–718 | MR | Zbl

[9] Telyakovskii S. A., “Ob ogranichennosti ryada iz modulei blokov chlenov ryadov po sinusam”, Tr. MIAN, 283, 2013, 252–256 | DOI | Zbl

[10] Telyakovskii S. A., “O ryade iz modulei blokov chlenov trigonometricheskikh ryadov”, Tr. MIAN, 284, 2014, 243–251 | DOI

[11] Telyakovskii S. A., Kholschevnikova N. N., “O ryadakh iz modulei blokov chlenov ryada po sisteme Uolsha”, Materialy 17-i mezhdunar. Saratovskoi zimnei shkoly “Sovremennye problemy teorii funktsii i ikh prilozheniya”, Nauchnaya kniga, Saratov, 2014, 257–258

[12] Tikhonov S. Yu., “O ravnomernoi skhodimosti trigonometricheskikh ryadov”, Mat. zametki, 81 (2007), 304–310 | DOI | MR | Zbl

[13] Leindler L., “On the uniform convergence and boundedness of a certain class of sine series”, Anal. Math., 27 (2001), 279–285 | DOI | MR | Zbl

[14] Leindler L., “A note on the uniform convergence and boundedness of a new class of sine series”, Anal. Math., 31 (2005), 269–275 | DOI | MR | Zbl

[15] Móricz F., “Pointwise behavior of Fourier integrals of functions of bounded variation over $\mathbb R$”, Math. Anal. Appl., 297 (2004), 527–539 | DOI | MR | Zbl

[16] Móricz F., “Pointwise behavior of double Fourier series of functions of bounded variation”, Monatsh. Math., 148 (2006), 51–59 | DOI | MR | Zbl

[17] Telyakovskii S. A., “Certain properties of Fourier series of functions with bounded variation”, East J. Appr., 10:1–2 (2004), 215–218 | MR | Zbl

[18] Trigub R. M., “A note on the paper of Telyakovskii ‘Certain properties of Fourier series of functions with bounded variation’ ”, East J. Appr., 13:1 (2007), 1–6 | MR