Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2013_18_5_a11, author = {S. A. Telyakovskii}, title = {Series formed by the moduli of blocks of terms of trigonometric series. {A~survey}}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {209--216}, publisher = {mathdoc}, volume = {18}, number = {5}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a11/} }
TY - JOUR AU - S. A. Telyakovskii TI - Series formed by the moduli of blocks of terms of trigonometric series. A~survey JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2013 SP - 209 EP - 216 VL - 18 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a11/ LA - ru ID - FPM_2013_18_5_a11 ER -
S. A. Telyakovskii. Series formed by the moduli of blocks of terms of trigonometric series. A~survey. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 5, pp. 209-216. http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a11/
[1] Belov A. S., “O summakh modulei chlenov sgruppirovannogo trigonometricheskogo ryada s monotonnymi koeffitsientami”, Vestn. Ivanov. gos. un-ta. Ser. “Biologiya, khimiya, fizika, matematika”, 2006, no. 3, 107–121
[2] Belov A. S., “O svoistvakh summy modulei chlenov sgruppirovannogo trigonometricheskogo ryada”, Mat. sb., 203:6 (2012), 35–62 | DOI | MR | Zbl
[3] Belov A. S., Telyakovskii S. A., “Usilenie teorem Dirikhle–Zhordana i Yanga o ryadakh Fure funktsii ogranichennoi variatsii”, Mat. sb., 198:6 (2007), 25–40 | DOI | MR | Zbl
[4] Zastavnyi V. P., “Otsenki summ iz modulei blokov trigonometricheskikh ryadov Fure”, Tr. In-ta mat. i mekh. UrO RAN, 16, no. 4, 2010, 166–179
[5] Telyakovskii S. A., “O chastnykh summakh ryadov Fure funktsii ogranichennoi variatsii”, Tr. MIAN, 219, 1997, 378–386 | MR | Zbl
[6] Telyakovskii S. A., “O ravnomernoi skhodimosti ryadov Fure funktsii ogranichennoi variatsii”, Tr. MIAN, 232, 2001, 318–326 | MR | Zbl
[7] Telyakovskii S. A., “Nekotorye svoistva ryadov Fure funktsii ogranichennoi variatsii. II”, Tr. In-ta mat. i mekh. UrO RAN, 11, no. 2, 2005, 168–174 | MR | Zbl
[8] Telyakovskii S. A., “O svoistvakh blokov chlenov ryada $\sum\frac1k\sin kx$”, Ukr. mat. zhurn., 64:5 (2012), 713–718 | MR | Zbl
[9] Telyakovskii S. A., “Ob ogranichennosti ryada iz modulei blokov chlenov ryadov po sinusam”, Tr. MIAN, 283, 2013, 252–256 | DOI | Zbl
[10] Telyakovskii S. A., “O ryade iz modulei blokov chlenov trigonometricheskikh ryadov”, Tr. MIAN, 284, 2014, 243–251 | DOI
[11] Telyakovskii S. A., Kholschevnikova N. N., “O ryadakh iz modulei blokov chlenov ryada po sisteme Uolsha”, Materialy 17-i mezhdunar. Saratovskoi zimnei shkoly “Sovremennye problemy teorii funktsii i ikh prilozheniya”, Nauchnaya kniga, Saratov, 2014, 257–258
[12] Tikhonov S. Yu., “O ravnomernoi skhodimosti trigonometricheskikh ryadov”, Mat. zametki, 81 (2007), 304–310 | DOI | MR | Zbl
[13] Leindler L., “On the uniform convergence and boundedness of a certain class of sine series”, Anal. Math., 27 (2001), 279–285 | DOI | MR | Zbl
[14] Leindler L., “A note on the uniform convergence and boundedness of a new class of sine series”, Anal. Math., 31 (2005), 269–275 | DOI | MR | Zbl
[15] Móricz F., “Pointwise behavior of Fourier integrals of functions of bounded variation over $\mathbb R$”, Math. Anal. Appl., 297 (2004), 527–539 | DOI | MR | Zbl
[16] Móricz F., “Pointwise behavior of double Fourier series of functions of bounded variation”, Monatsh. Math., 148 (2006), 51–59 | DOI | MR | Zbl
[17] Telyakovskii S. A., “Certain properties of Fourier series of functions with bounded variation”, East J. Appr., 10:1–2 (2004), 215–218 | MR | Zbl
[18] Trigub R. M., “A note on the paper of Telyakovskii ‘Certain properties of Fourier series of functions with bounded variation’ ”, East J. Appr., 13:1 (2007), 1–6 | MR