Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2013_18_5_a1, author = {M. V. Balashov}, title = {Maximization of a~function with {Lipschitz} continuous gradient}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {17--25}, publisher = {mathdoc}, volume = {18}, number = {5}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a1/} }
M. V. Balashov. Maximization of a~function with Lipschitz continuous gradient. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 5, pp. 17-25. http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a1/
[1] Balashov M. V., Ivanov G. E., “Slabo vypuklye i proksimalno gladkie mnozhestva v banakhovykh prostranstvakh”, Izv. RAN. Ser. mat., 73:3 (2009), 23–66 | DOI | MR | Zbl
[2] Ivanov G. E., Slabo vypuklye mnozhestva i funktsii, Fizmatlit, M., 2006
[3] Polovinkin E. S., Balashov M. V., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2007 | Zbl
[4] Balashov M. V., Golubev M. O., “About the Lipschitz property of the metric projection in the Hilbert space”, J. Math. Anal. Appl., 394 (2012), 545–551 | DOI | MR | Zbl
[5] Bernard F., Thibault L., Zlateva N., “Characterization of proximal regular sets in super reflexive Banach spaces”, J. Convex Anal., 13:3–4 (2006), 525–559 | MR | Zbl
[6] Canino A., “On $p$-convex sets and geodesics”, J. Differ. Equ., 75 (1988), 118–157 | DOI | MR | Zbl
[7] Clarke F. H., Stern R. J., Wolenski P. R., “Proximal smoothness and lower-$C^{2}$ property”, J. Convex Anal., 2:1–2 (1995), 117–144 | MR | Zbl
[8] Hiriart-Urruty J.-B., Ledyaev Yu. S., “A note on the characterization of the global maxima of a (tangentially) convex function over a convex set”, J. Convex Anal., 3:1 (1996), 55–61 | MR | Zbl
[9] Poliquin R. A., Rockafellar R. T., Thibault L., “Local differentiability of distance functions”, Trans. Am. Math. Soc., 352 (2000), 5231–5249 | DOI | MR | Zbl