Estimates for the growth order of sequences of multiple rectangular Fourier sums of integrable functions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 5, pp. 3-15

Voir la notice de l'article provenant de la source Math-Net.Ru

Estimates on the growth order of sequences of rectangular partial sums of multiple Fourier series of functions integrable on the $d$-dimensional torus $[-\pi,\pi]^d$ are obtained.
@article{FPM_2013_18_5_a0,
     author = {N. Yu. Antonov},
     title = {Estimates for the growth order of sequences of multiple rectangular {Fourier} sums of integrable functions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a0/}
}
TY  - JOUR
AU  - N. Yu. Antonov
TI  - Estimates for the growth order of sequences of multiple rectangular Fourier sums of integrable functions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 3
EP  - 15
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a0/
LA  - ru
ID  - FPM_2013_18_5_a0
ER  - 
%0 Journal Article
%A N. Yu. Antonov
%T Estimates for the growth order of sequences of multiple rectangular Fourier sums of integrable functions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 3-15
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a0/
%G ru
%F FPM_2013_18_5_a0
N. Yu. Antonov. Estimates for the growth order of sequences of multiple rectangular Fourier sums of integrable functions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 5, pp. 3-15. http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a0/