Estimates for the growth order of sequences of multiple rectangular Fourier sums of integrable functions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 5, pp. 3-15
Voir la notice de l'article provenant de la source Math-Net.Ru
Estimates on the growth order of sequences of rectangular partial sums of multiple Fourier series of functions integrable on the $d$-dimensional torus $[-\pi,\pi]^d$ are obtained.
@article{FPM_2013_18_5_a0,
author = {N. Yu. Antonov},
title = {Estimates for the growth order of sequences of multiple rectangular {Fourier} sums of integrable functions},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {3--15},
publisher = {mathdoc},
volume = {18},
number = {5},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a0/}
}
TY - JOUR AU - N. Yu. Antonov TI - Estimates for the growth order of sequences of multiple rectangular Fourier sums of integrable functions JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2013 SP - 3 EP - 15 VL - 18 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a0/ LA - ru ID - FPM_2013_18_5_a0 ER -
%0 Journal Article %A N. Yu. Antonov %T Estimates for the growth order of sequences of multiple rectangular Fourier sums of integrable functions %J Fundamentalʹnaâ i prikladnaâ matematika %D 2013 %P 3-15 %V 18 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a0/ %G ru %F FPM_2013_18_5_a0
N. Yu. Antonov. Estimates for the growth order of sequences of multiple rectangular Fourier sums of integrable functions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 5, pp. 3-15. http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a0/