Estimates for the growth order of sequences of multiple rectangular Fourier sums of integrable functions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 5, pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

Estimates on the growth order of sequences of rectangular partial sums of multiple Fourier series of functions integrable on the $d$-dimensional torus $[-\pi,\pi]^d$ are obtained.
@article{FPM_2013_18_5_a0,
     author = {N. Yu. Antonov},
     title = {Estimates for the growth order of sequences of multiple rectangular {Fourier} sums of integrable functions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a0/}
}
TY  - JOUR
AU  - N. Yu. Antonov
TI  - Estimates for the growth order of sequences of multiple rectangular Fourier sums of integrable functions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 3
EP  - 15
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a0/
LA  - ru
ID  - FPM_2013_18_5_a0
ER  - 
%0 Journal Article
%A N. Yu. Antonov
%T Estimates for the growth order of sequences of multiple rectangular Fourier sums of integrable functions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 3-15
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a0/
%G ru
%F FPM_2013_18_5_a0
N. Yu. Antonov. Estimates for the growth order of sequences of multiple rectangular Fourier sums of integrable functions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 5, pp. 3-15. http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a0/

[1] Antonov N. Yu., “Integriruemost mazhorant summ Fure i raskhodimost ryadov Fure funktsii s ogranicheniyami na integralnyi modul nepreryvnosti”, Mat. zametki, 76:5 (2004), 651–665 | DOI | MR | Zbl

[2] Antonov N. Yu., “O skorosti rosta posledovatelnostei kratnykh pryamougolnykh summ Fure”, Tr. In-ta mat. i mekh. UrO RAN, 11, no. 2, 2005, 10–29 | MR | Zbl

[3] Antonov N. Yu., “O skorosti rosta posledovatelnostei dvoinykh pryamougolnykh summ Fure funktsii iz klassov $\varphi(L)$”, Tr. In-ta mat. i mekh. UrO RAN, 18, no. 4, 2012, 26–34

[4] Antonov N. Yu., “Otsenki rosta proizvolnykh posledovatelnostei kratnykh pryamougolnykh summ Fure”, Tr. In-ta mat. i mekh. UrO RAN, 19, no. 2, 2013, 26–33

[5] Karagulyan G. A., “Preobrazovanie Gilberta i eksponentsialnye integralnye otsenki pryamougolnykh chastichnykh summ dvoinykh ryadov Fure”, Mat. sb., 187:3 (1996), 55–74 | DOI | MR | Zbl

[6] Oskolkov K. I., “Podposledovatelnosti summ Fure integriruemykh funktsii”, Tr. Mat. in-ta im. V. A. Steklova, 167, 1985, 239–260 | MR | Zbl

[7] Stepanets A. I., “Otsenki otklonenii chastnykh summ Fure na klassakh nepreryvnykh periodicheskikh funktsii mnogikh peremennykh”, Izv. AN SSSR. Ser. mat., 44:5 (1980), 1150–1190 | MR | Zbl

[8] Hardy G. H., “On the summability of Fourier series”, Proc. London Math. Soc., 12 (1913), 365–372 | DOI | Zbl

[9] Stein E. M., “On limits of sequences of operators”, Ann. Math., 74:1 (1961), 140–170 | DOI | MR | Zbl

[10] Tandori K., “Über einen Zusammenhang zwischen der Grössenordnung der Partialsummen der Fourierreihe und der Integrabilitätseigenschaft der Funktionen”, Acta Sci. Math., 45 (1983), 409–413 | MR | Zbl