Automorphism-invariant modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 4, pp. 129-135.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that all automorphism-invariant nonsingular right $A$-modules are injective if and only if the factor ring $A/G(A_A)$ of the ring $A$ with respect to the right Goldie radical $G(A_A)$ is right strongly semiprime.
@article{FPM_2013_18_4_a9,
     author = {A. A. Tuganbaev},
     title = {Automorphism-invariant modules},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {129--135},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a9/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Automorphism-invariant modules
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 129
EP  - 135
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a9/
LA  - ru
ID  - FPM_2013_18_4_a9
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Automorphism-invariant modules
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 129-135
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a9/
%G ru
%F FPM_2013_18_4_a9
A. A. Tuganbaev. Automorphism-invariant modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 4, pp. 129-135. http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a9/

[1] Tuganbaev A. A., “Avtomorfizmy podmodulei i ikh prodolzhenie”, Diskret. mat., 25:1 (2013), 144–151 | DOI | MR | Zbl

[2] Tuganbaev A. A., “Kharakteristicheskie podmoduli in'ektivnykh modulei”, Diskret. mat., 25:2 (2013), 85–90 | DOI | MR | Zbl

[3] Alahmadi A., Er N., Jain S. K., “Modules which are invariant under monomorphisms of their injective hulls”, J. Austral. Math. Soc., 79:3 (2005), 2265–2271 | DOI | MR

[4] Dickson S. E., Fuller K. R., “Algebras for which every indecomposable right module is invariant in its injectve envelope”, Pacific J. Math., 31:3 (1969), 655–658 | DOI | MR | Zbl

[5] Er N., Singh S., Srivastava A. K., “Rings and modules which are stable under automorphisms of their injectve hulls”, J. Algebra, 379 (2013), 223–229 | DOI | MR | Zbl

[6] Guil Asensio P. A., Srivastava A. K., “Automorphism-invariant modules satisfy the exchange property”, J. Algebra, 388 (2013), 101–106 | DOI | MR | Zbl

[7] Handelman D., “Strongly semiprime rings”, Pacific J. Math., 60:1 (1975), 115–122 | MR | Zbl

[8] Jain S. K., Singh S., “Quasi-injective and pseudo-injective modules”, Can. Math. Bull., 18:3 (1975), 359–366 | DOI | MR | Zbl

[9] Johnson R. E., Wong F. T., “Quasi-injective modules and irreducible rings”, J. London Math. Soc., 36 (1961), 260–268 | DOI | MR | Zbl

[10] Kutami M., Oshiro K., “Strongly semiprime rings and nonsingular quasi-injective modules”, Osaka J. Math., 17 (1980), 41–50 | MR | Zbl

[11] Lee T. K., Zhou Y., “Modules which are invariant under automorphisms of their injective hulls”, J. Algebra Appl., 12:2 (2013), 1250159, 9 pp. | DOI | MR | Zbl

[12] Singh S., Srivastava A. K., “Rings of invariant module type and automorphism-invariant modules”, Ring Theory and Its Applications, Volume in honor of T. Y. Lam, Contemp. Math., Amer. Math. Soc., Providence, 2014

[13] Teply M. L., “Pseudo-injective modules which are not quasiinjective”, Proc. Am. Math. Soc., 49:2 (1975), 305–310 | DOI | MR | Zbl

[14] Tuganbaev A., Semidistributive Modules and Rings, Kluwer Academic, Dordrecht, 1998 | MR | Zbl

[15] Wisbauer R., Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991 | MR | Zbl