Automorphism-invariant modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 4, pp. 129-135

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that all automorphism-invariant nonsingular right $A$-modules are injective if and only if the factor ring $A/G(A_A)$ of the ring $A$ with respect to the right Goldie radical $G(A_A)$ is right strongly semiprime.
@article{FPM_2013_18_4_a9,
     author = {A. A. Tuganbaev},
     title = {Automorphism-invariant modules},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {129--135},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a9/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Automorphism-invariant modules
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 129
EP  - 135
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a9/
LA  - ru
ID  - FPM_2013_18_4_a9
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Automorphism-invariant modules
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 129-135
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a9/
%G ru
%F FPM_2013_18_4_a9
A. A. Tuganbaev. Automorphism-invariant modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 4, pp. 129-135. http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a9/