Multiplicatively idempotent semirings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 4, pp. 41-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the investigation of semirings with idempotent multiplication. General structure theorems for such semirings are proved. We focus on the study of the class $\mathfrak M$ of all commutative multiplicatively idempotent semirings. We obtain necessary conditions when semirings from $\mathfrak M$ are subdirectly irreducible. We consider some properties of the variety $\mathfrak M$. In particular, we show that $\mathfrak M$ is generated by two of its subvarieties, defined by the identities $3x=x$ and $3x=2x$. We explore the variety $\mathfrak N$ generated by two-element commutative multiplicatively idempotent semirings. It is proved that the lattice of all subvarieties of $\mathfrak N$ is a $16$-element Boolean lattice.
@article{FPM_2013_18_4_a3,
     author = {E. M. Vechtomov and A. A. Petrov},
     title = {Multiplicatively idempotent semirings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {41--70},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a3/}
}
TY  - JOUR
AU  - E. M. Vechtomov
AU  - A. A. Petrov
TI  - Multiplicatively idempotent semirings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 41
EP  - 70
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a3/
LA  - ru
ID  - FPM_2013_18_4_a3
ER  - 
%0 Journal Article
%A E. M. Vechtomov
%A A. A. Petrov
%T Multiplicatively idempotent semirings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 41-70
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a3/
%G ru
%F FPM_2013_18_4_a3
E. M. Vechtomov; A. A. Petrov. Multiplicatively idempotent semirings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 4, pp. 41-70. http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a3/

[1] Vechtomov E. M., Vvedenie v polukoltsa, Izd-vo VyatGPU, Kirov, 2000

[2] Vechtomov E. M., Petrov A. A., “O mnogoobrazii polukolets s idempotentnym umnozheniem”, Algebra i logika: teoriya i prilozheniya, Tez. dokl. Mezhdunar. konf., posvyasch. pamyati V. P. Shunkova, Krasnoyarsk, 2013, 33–34

[3] Vechtomov E. M., Petrov A. A., “O podpryamo nerazlozhimykh kommutativnykh multiplikativno idempotentnykh polukoltsakh”, Algebra i teoriya chisel: sovremennye problemy i prilozheniya, Tez. dokl. XI Mezhdunar. konf., Saratov, 2013, 14–15

[4] Vechtomov E. M., Petrov A. A., “Nekotorye mnogoobraziya kommutativnykh multiplikativno idempotentnykh polukolets”, Sovremennye problemy matematiki i eë prilozhenii, Trudy 45-i Mezhdunar. molodëzhnoi shkoly-konferentsii, posvyasch. 75-letiyu V. I. Berdysheva, Ekaterinburg, 2014, 10–12

[5] Kon P., Universalnaya algebra, Mir, M., 1968 | MR

[6] Lukin M. A., “Ob odnoi universalnoi kongruentsii na polukoltsakh”, Problemy sovremennogo matematicheskogo obrazovaniya v vuzakh i shkolakh Rossii, Mater. V Vserossiiskoi nauch.-metod. konf., Kirov, 2012, 312–316

[7] Maltsev A. I., Algebraicheskie sistemy, Nauka, M., 1970 | MR | Zbl

[8] Petrov A. A., “Odin klass multiplikativno idempotentnykh polukolets”, Algebra i kombinatorika, Tez. Mezhdunar. konf. po algebre i kombinatorike, posvyasch. 60-letiyu A. A. Makhneva, Ekaterinburg, 2013, 131–132

[9] Chermnykh V. V., “Funktsionalnye predstavleniya polukolets”, Fundament. i prikl. mat., 17:3 (2011/2012), 111–227 | MR

[10] Ghosh S., “Another note on the least lattice congruence on semirings”, Soochow J. Math., 22:3 (1996), 357–362 | MR | Zbl

[11] Ghosh S., “A characterization semirings which subdirect products of rings and distributive lattices”, Semigroup Forum, 59 (1999), 106–120 | DOI | MR | Zbl

[12] Kalman J. A., “Subdirect decomposition of distributive quasilattices”, Fund. Math., 71 (1971), 161–163 | MR | Zbl

[13] McKenzie R., Romanowska A., “Varieties of $\wedge$-distributive bisemilattices”, Contrib. Gen. Algebra, Proc. Klagefurt Conf., 1978, Klagefurt, 1979, 213–218 | MR | Zbl

[14] McLean D., “Idempotent semigroups”, Am. Math. Mon., 61:2 (1954), 110–113 | DOI | MR | Zbl

[15] Pastijn F., Romanowska A., “Idempotent distributive semirings. I”, Acta Sci. Math., 44 (1982), 239–253 | MR | Zbl

[16] Romanowska A., “On bisemilattices with one distributive law”, Algebra Universalis, 10 (1980), 36–47 | DOI | MR | Zbl

[17] Vechtomov E. M., Petrov A. A., “About the structure of multiplicative idempotent semirings”, Abstract of Reports of the 9th Int. Alg. Conf. in Ukraine, L'viv, 2013, 210