Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2013_18_4_a3, author = {E. M. Vechtomov and A. A. Petrov}, title = {Multiplicatively idempotent semirings}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {41--70}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a3/} }
E. M. Vechtomov; A. A. Petrov. Multiplicatively idempotent semirings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 4, pp. 41-70. http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a3/
[1] Vechtomov E. M., Vvedenie v polukoltsa, Izd-vo VyatGPU, Kirov, 2000
[2] Vechtomov E. M., Petrov A. A., “O mnogoobrazii polukolets s idempotentnym umnozheniem”, Algebra i logika: teoriya i prilozheniya, Tez. dokl. Mezhdunar. konf., posvyasch. pamyati V. P. Shunkova, Krasnoyarsk, 2013, 33–34
[3] Vechtomov E. M., Petrov A. A., “O podpryamo nerazlozhimykh kommutativnykh multiplikativno idempotentnykh polukoltsakh”, Algebra i teoriya chisel: sovremennye problemy i prilozheniya, Tez. dokl. XI Mezhdunar. konf., Saratov, 2013, 14–15
[4] Vechtomov E. M., Petrov A. A., “Nekotorye mnogoobraziya kommutativnykh multiplikativno idempotentnykh polukolets”, Sovremennye problemy matematiki i eë prilozhenii, Trudy 45-i Mezhdunar. molodëzhnoi shkoly-konferentsii, posvyasch. 75-letiyu V. I. Berdysheva, Ekaterinburg, 2014, 10–12
[5] Kon P., Universalnaya algebra, Mir, M., 1968 | MR
[6] Lukin M. A., “Ob odnoi universalnoi kongruentsii na polukoltsakh”, Problemy sovremennogo matematicheskogo obrazovaniya v vuzakh i shkolakh Rossii, Mater. V Vserossiiskoi nauch.-metod. konf., Kirov, 2012, 312–316
[7] Maltsev A. I., Algebraicheskie sistemy, Nauka, M., 1970 | MR | Zbl
[8] Petrov A. A., “Odin klass multiplikativno idempotentnykh polukolets”, Algebra i kombinatorika, Tez. Mezhdunar. konf. po algebre i kombinatorike, posvyasch. 60-letiyu A. A. Makhneva, Ekaterinburg, 2013, 131–132
[9] Chermnykh V. V., “Funktsionalnye predstavleniya polukolets”, Fundament. i prikl. mat., 17:3 (2011/2012), 111–227 | MR
[10] Ghosh S., “Another note on the least lattice congruence on semirings”, Soochow J. Math., 22:3 (1996), 357–362 | MR | Zbl
[11] Ghosh S., “A characterization semirings which subdirect products of rings and distributive lattices”, Semigroup Forum, 59 (1999), 106–120 | DOI | MR | Zbl
[12] Kalman J. A., “Subdirect decomposition of distributive quasilattices”, Fund. Math., 71 (1971), 161–163 | MR | Zbl
[13] McKenzie R., Romanowska A., “Varieties of $\wedge$-distributive bisemilattices”, Contrib. Gen. Algebra, Proc. Klagefurt Conf., 1978, Klagefurt, 1979, 213–218 | MR | Zbl
[14] McLean D., “Idempotent semigroups”, Am. Math. Mon., 61:2 (1954), 110–113 | DOI | MR | Zbl
[15] Pastijn F., Romanowska A., “Idempotent distributive semirings. I”, Acta Sci. Math., 44 (1982), 239–253 | MR | Zbl
[16] Romanowska A., “On bisemilattices with one distributive law”, Algebra Universalis, 10 (1980), 36–47 | DOI | MR | Zbl
[17] Vechtomov E. M., Petrov A. A., “About the structure of multiplicative idempotent semirings”, Abstract of Reports of the 9th Int. Alg. Conf. in Ukraine, L'viv, 2013, 210