Multiplicatively idempotent semirings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 4, pp. 41-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article is devoted to the investigation of semirings with idempotent multiplication. General structure theorems for such semirings are proved. We focus on the study of the class $\mathfrak M$ of all commutative multiplicatively idempotent semirings. We obtain necessary conditions when semirings from $\mathfrak M$ are subdirectly irreducible. We consider some properties of the variety $\mathfrak M$. In particular, we show that $\mathfrak M$ is generated by two of its subvarieties, defined by the identities $3x=x$ and $3x=2x$. We explore the variety $\mathfrak N$ generated by two-element commutative multiplicatively idempotent semirings. It is proved that the lattice of all subvarieties of $\mathfrak N$ is a $16$-element Boolean lattice.
@article{FPM_2013_18_4_a3,
     author = {E. M. Vechtomov and A. A. Petrov},
     title = {Multiplicatively idempotent semirings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {41--70},
     year = {2013},
     volume = {18},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a3/}
}
TY  - JOUR
AU  - E. M. Vechtomov
AU  - A. A. Petrov
TI  - Multiplicatively idempotent semirings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 41
EP  - 70
VL  - 18
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a3/
LA  - ru
ID  - FPM_2013_18_4_a3
ER  - 
%0 Journal Article
%A E. M. Vechtomov
%A A. A. Petrov
%T Multiplicatively idempotent semirings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 41-70
%V 18
%N 4
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a3/
%G ru
%F FPM_2013_18_4_a3
E. M. Vechtomov; A. A. Petrov. Multiplicatively idempotent semirings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 4, pp. 41-70. http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a3/

[1] Vechtomov E. M., Vvedenie v polukoltsa, Izd-vo VyatGPU, Kirov, 2000

[2] Vechtomov E. M., Petrov A. A., “O mnogoobrazii polukolets s idempotentnym umnozheniem”, Algebra i logika: teoriya i prilozheniya, Tez. dokl. Mezhdunar. konf., posvyasch. pamyati V. P. Shunkova, Krasnoyarsk, 2013, 33–34

[3] Vechtomov E. M., Petrov A. A., “O podpryamo nerazlozhimykh kommutativnykh multiplikativno idempotentnykh polukoltsakh”, Algebra i teoriya chisel: sovremennye problemy i prilozheniya, Tez. dokl. XI Mezhdunar. konf., Saratov, 2013, 14–15

[4] Vechtomov E. M., Petrov A. A., “Nekotorye mnogoobraziya kommutativnykh multiplikativno idempotentnykh polukolets”, Sovremennye problemy matematiki i eë prilozhenii, Trudy 45-i Mezhdunar. molodëzhnoi shkoly-konferentsii, posvyasch. 75-letiyu V. I. Berdysheva, Ekaterinburg, 2014, 10–12

[5] Kon P., Universalnaya algebra, Mir, M., 1968 | MR

[6] Lukin M. A., “Ob odnoi universalnoi kongruentsii na polukoltsakh”, Problemy sovremennogo matematicheskogo obrazovaniya v vuzakh i shkolakh Rossii, Mater. V Vserossiiskoi nauch.-metod. konf., Kirov, 2012, 312–316

[7] Maltsev A. I., Algebraicheskie sistemy, Nauka, M., 1970 | MR | Zbl

[8] Petrov A. A., “Odin klass multiplikativno idempotentnykh polukolets”, Algebra i kombinatorika, Tez. Mezhdunar. konf. po algebre i kombinatorike, posvyasch. 60-letiyu A. A. Makhneva, Ekaterinburg, 2013, 131–132

[9] Chermnykh V. V., “Funktsionalnye predstavleniya polukolets”, Fundament. i prikl. mat., 17:3 (2011/2012), 111–227 | MR

[10] Ghosh S., “Another note on the least lattice congruence on semirings”, Soochow J. Math., 22:3 (1996), 357–362 | MR | Zbl

[11] Ghosh S., “A characterization semirings which subdirect products of rings and distributive lattices”, Semigroup Forum, 59 (1999), 106–120 | DOI | MR | Zbl

[12] Kalman J. A., “Subdirect decomposition of distributive quasilattices”, Fund. Math., 71 (1971), 161–163 | MR | Zbl

[13] McKenzie R., Romanowska A., “Varieties of $\wedge$-distributive bisemilattices”, Contrib. Gen. Algebra, Proc. Klagefurt Conf., 1978, Klagefurt, 1979, 213–218 | MR | Zbl

[14] McLean D., “Idempotent semigroups”, Am. Math. Mon., 61:2 (1954), 110–113 | DOI | MR | Zbl

[15] Pastijn F., Romanowska A., “Idempotent distributive semirings. I”, Acta Sci. Math., 44 (1982), 239–253 | MR | Zbl

[16] Romanowska A., “On bisemilattices with one distributive law”, Algebra Universalis, 10 (1980), 36–47 | DOI | MR | Zbl

[17] Vechtomov E. M., Petrov A. A., “About the structure of multiplicative idempotent semirings”, Abstract of Reports of the 9th Int. Alg. Conf. in Ukraine, L'viv, 2013, 210