Decomposition of unitary linear groups into products of free factors
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 4, pp. 33-39
In this paper, we construct noncommutative algebras over a square-closed field such that the unitary linear groups over these algebras decompose to nontrivial free products. In particular, we give an example when the elementary unitary subgroup belongs to one of these factors.
@article{FPM_2013_18_4_a2,
author = {E. I. Bunina and D. V. Trushin and M. V. Tsvetkov},
title = {Decomposition of unitary linear groups into products of free factors},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {33--39},
year = {2013},
volume = {18},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a2/}
}
TY - JOUR AU - E. I. Bunina AU - D. V. Trushin AU - M. V. Tsvetkov TI - Decomposition of unitary linear groups into products of free factors JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2013 SP - 33 EP - 39 VL - 18 IS - 4 UR - http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a2/ LA - ru ID - FPM_2013_18_4_a2 ER -
E. I. Bunina; D. V. Trushin; M. V. Tsvetkov. Decomposition of unitary linear groups into products of free factors. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 4, pp. 33-39. http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a2/
[1] Gerasimov V. N., “Gruppa edinits svobodnogo proizvedeniya kolets”, Mat. sb., 134(176):1 (1987), 42–65 | MR | Zbl
[2] O'Mira O., Lektsii o simplekticheskikh gruppakh, Mir, M., 1979
[3] Shupp P., Lindon R., Kombinatornaya teoriya grupp, Mir, M., 1980 | MR
[4] Bergman G. M., “Modules over coproducts of rings”, Trans. Am. Math. Soc., 200 (1974), 1–32 | DOI | MR | Zbl