Decomposition of unitary linear groups into products of free factors
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 4, pp. 33-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we construct noncommutative algebras over a square-closed field such that the unitary linear groups over these algebras decompose to nontrivial free products. In particular, we give an example when the elementary unitary subgroup belongs to one of these factors.
@article{FPM_2013_18_4_a2,
     author = {E. I. Bunina and D. V. Trushin and M. V. Tsvetkov},
     title = {Decomposition of unitary linear groups into products of free factors},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {33--39},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a2/}
}
TY  - JOUR
AU  - E. I. Bunina
AU  - D. V. Trushin
AU  - M. V. Tsvetkov
TI  - Decomposition of unitary linear groups into products of free factors
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 33
EP  - 39
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a2/
LA  - ru
ID  - FPM_2013_18_4_a2
ER  - 
%0 Journal Article
%A E. I. Bunina
%A D. V. Trushin
%A M. V. Tsvetkov
%T Decomposition of unitary linear groups into products of free factors
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 33-39
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a2/
%G ru
%F FPM_2013_18_4_a2
E. I. Bunina; D. V. Trushin; M. V. Tsvetkov. Decomposition of unitary linear groups into products of free factors. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 4, pp. 33-39. http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a2/

[1] Gerasimov V. N., “Gruppa edinits svobodnogo proizvedeniya kolets”, Mat. sb., 134(176):1 (1987), 42–65 | MR | Zbl

[2] O'Mira O., Lektsii o simplekticheskikh gruppakh, Mir, M., 1979

[3] Shupp P., Lindon R., Kombinatornaya teoriya grupp, Mir, M., 1980 | MR

[4] Bergman G. M., “Modules over coproducts of rings”, Trans. Am. Math. Soc., 200 (1974), 1–32 | DOI | MR | Zbl