Stable groups over associative rings with $1/2$. Description of isomorphisms of the stable unitary groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 4, pp. 3-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the stable unitary groups over associative rings with $1/2$ and isomorphisms between them. We describe the action of the isomorphisms on the stable elementary unitary subgroup.
@article{FPM_2013_18_4_a0,
     author = {A. S. Atkarskaya},
     title = {Stable groups over associative rings with $1/2$. {Description} of isomorphisms of the stable unitary groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--21},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a0/}
}
TY  - JOUR
AU  - A. S. Atkarskaya
TI  - Stable groups over associative rings with $1/2$. Description of isomorphisms of the stable unitary groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 3
EP  - 21
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a0/
LA  - ru
ID  - FPM_2013_18_4_a0
ER  - 
%0 Journal Article
%A A. S. Atkarskaya
%T Stable groups over associative rings with $1/2$. Description of isomorphisms of the stable unitary groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 3-21
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a0/
%G ru
%F FPM_2013_18_4_a0
A. S. Atkarskaya. Stable groups over associative rings with $1/2$. Description of isomorphisms of the stable unitary groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 4, pp. 3-21. http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a0/

[1] Golubchik I. Z., Mikhalëv A. V., “Izomorfizm unitarnykh grupp nad assotsiativnymi koltsami”, Zap. nauch. sem. LOMI AN SSSR, 132, 1983, 97–109 | MR

[2] Klein I. S., Mikhalëv A. V., “Ortogonalnaya gruppa Steinberga nad koltsom s involyutsiei”, Algebra i logika, 9:2 (1970), 145–166 | MR

[3] Petechuk V. M., Avtomorfizmy simplekticheskoi gruppy $\mathrm{Sp}_n(R)$ nad nekotorymi lokalnymi koltsami, Dep. VINITI No 2224-80

[4] Petechuk V. M., “Izomorfizmy simplekticheskikh grupp nad kommutativnymi koltsami”, Algebra i logika, 22:5 (1983), 551–562 | MR | Zbl

[5] Dieudonne J., “On the automorphisms of the classical groups”, Mem. Am. Math. Soc., 2 (1951), 1–95 | DOI | MR

[6] Hahn A. J., O'Meara O. T., The Classical Groups and K-Theory, Springer, Berlin, 1989 | MR | Zbl

[7] Hua L. K., “On the automorphisms of the symplectic group over any field”, Ann. Math., 49 (1948), 739–759 | DOI | MR | Zbl

[8] Johnson A. A., “The automorphisms of the unitary groups over infinite fields”, Am. J. Math., 95:1 (1973), 87–107 | DOI | MR | Zbl

[9] McQueen L., McDonald B. R., “Automorphisms of the symplectic group over a local ring”, J. Algebra, 30:1–3 (1974), 485–495 | DOI | MR | Zbl

[10] O'Meara O. T., “The automorphisms of the standard symplectic group over any integral domain”, J. Reine Angew. Math., 230 (1968), 103–138 | MR

[11] Rickart C. E., “Isomorphic group of linear transformations. II”, Am. J. Math., 73 (1951), 697–716 | DOI | MR | Zbl

[12] Schreier O., van der Waerden B. L., “Die Automorphismen der projektiven Gruppen”, Abh. Math. Sem. Univ. Hamburg, 6 (1928), 303–322 | DOI | MR | Zbl