Codimension growth of algebras with adjoint unit
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 3, pp. 11-26
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, numerical characteristics of identities of finite-dimensional nonassociative algebras are studied. Main attention is paid to the question of the change of the PI-exponent after adjoining an external unital element. We construct an example of a four-dimensional simple algebra such that its PI-exponent increases by one after adjoining an external unity.
@article{FPM_2013_18_3_a1,
author = {O. E. Bezushchak and A. A. Beljaev and M. V. Zaicev},
title = {Codimension growth of algebras with adjoint unit},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {11--26},
publisher = {mathdoc},
volume = {18},
number = {3},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a1/}
}
TY - JOUR AU - O. E. Bezushchak AU - A. A. Beljaev AU - M. V. Zaicev TI - Codimension growth of algebras with adjoint unit JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2013 SP - 11 EP - 26 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a1/ LA - ru ID - FPM_2013_18_3_a1 ER -
O. E. Bezushchak; A. A. Beljaev; M. V. Zaicev. Codimension growth of algebras with adjoint unit. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 3, pp. 11-26. http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a1/