Estimates for the Steiner--Gromov ratio of Riemannian manifolds
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 2, pp. 119-124
Voir la notice de l'article provenant de la source Math-Net.Ru
The Steiner–Gromov ratio of a metric space $X$ characterizes the ratio of the minimal filling weight to the minimal spanning tree length for a finite subset of $X$. It is proved that the Steiner–Gromov ratio of an arbitrary Riemannian manifold does not exceed the Steiner–Gromov ratio of the Euclidean space of the same dimension.
@article{FPM_2013_18_2_a8,
author = {V. A. Mishchenko},
title = {Estimates for the {Steiner--Gromov} ratio of {Riemannian} manifolds},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {119--124},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a8/}
}
V. A. Mishchenko. Estimates for the Steiner--Gromov ratio of Riemannian manifolds. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 2, pp. 119-124. http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a8/