Estimates for the Steiner--Gromov ratio of Riemannian manifolds
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 2, pp. 119-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Steiner–Gromov ratio of a metric space $X$ characterizes the ratio of the minimal filling weight to the minimal spanning tree length for a finite subset of $X$. It is proved that the Steiner–Gromov ratio of an arbitrary Riemannian manifold does not exceed the Steiner–Gromov ratio of the Euclidean space of the same dimension.
@article{FPM_2013_18_2_a8,
     author = {V. A. Mishchenko},
     title = {Estimates for the {Steiner--Gromov} ratio of {Riemannian} manifolds},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {119--124},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a8/}
}
TY  - JOUR
AU  - V. A. Mishchenko
TI  - Estimates for the Steiner--Gromov ratio of Riemannian manifolds
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 119
EP  - 124
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a8/
LA  - ru
ID  - FPM_2013_18_2_a8
ER  - 
%0 Journal Article
%A V. A. Mishchenko
%T Estimates for the Steiner--Gromov ratio of Riemannian manifolds
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 119-124
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a8/
%G ru
%F FPM_2013_18_2_a8
V. A. Mishchenko. Estimates for the Steiner--Gromov ratio of Riemannian manifolds. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 2, pp. 119-124. http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a8/

[1] Ivanov A. O., Tuzhilin A. A., Teoriya ekstremalnykh setei., Institut kompyuternykh issledovanii, M.–Izhevsk, 2003

[2] Ivanov A. O., Tuzhilin A. A., “Odnomernaya problema Gromova o minimalnom zapolnenii”, Mat. sb., 203:5 (2012), 65–118 | DOI | MR | Zbl

[3] Ivanov A. O., Tuzhilin A. A., Tsislik D., “Otnoshenie Shteinera dlya mnogoobrazii”, Mat. zametki, 74:3 (2003), 387–395 | DOI | MR | Zbl

[4] Innami N., Kim B. H., “Steiner ratio for huperbolic surfaces”, Proc. Japan Acad. Ser. A Math. Sci., 82:6 (2006), 77–79 | DOI | MR | Zbl