Estimates for the Steiner–Gromov ratio of Riemannian manifolds
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 2, pp. 119-124
Cet article a éte moissonné depuis la source Math-Net.Ru
The Steiner–Gromov ratio of a metric space $X$ characterizes the ratio of the minimal filling weight to the minimal spanning tree length for a finite subset of $X$. It is proved that the Steiner–Gromov ratio of an arbitrary Riemannian manifold does not exceed the Steiner–Gromov ratio of the Euclidean space of the same dimension.
@article{FPM_2013_18_2_a8,
author = {V. A. Mishchenko},
title = {Estimates for the {Steiner{\textendash}Gromov} ratio of {Riemannian} manifolds},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {119--124},
year = {2013},
volume = {18},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a8/}
}
V. A. Mishchenko. Estimates for the Steiner–Gromov ratio of Riemannian manifolds. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 2, pp. 119-124. http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a8/
[1] Ivanov A. O., Tuzhilin A. A., Teoriya ekstremalnykh setei., Institut kompyuternykh issledovanii, M.–Izhevsk, 2003
[2] Ivanov A. O., Tuzhilin A. A., “Odnomernaya problema Gromova o minimalnom zapolnenii”, Mat. sb., 203:5 (2012), 65–118 | DOI | MR | Zbl
[3] Ivanov A. O., Tuzhilin A. A., Tsislik D., “Otnoshenie Shteinera dlya mnogoobrazii”, Mat. zametki, 74:3 (2003), 387–395 | DOI | MR | Zbl
[4] Innami N., Kim B. H., “Steiner ratio for huperbolic surfaces”, Proc. Japan Acad. Ser. A Math. Sci., 82:6 (2006), 77–79 | DOI | MR | Zbl