The type of minimal branching geodesics defines the norm in a~normed space
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 2, pp. 67-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we investigate the inverse problem to the minimal branching geodesic searching problem in a normed space. Let us consider a normed space. Then the form of the minimal branching geodesic is determined. We must find all possible normed spaces with the same form of the minimal branching geodesics as the one in the considered normed space. The case of Euclidean norms is analyzed in detail.
@article{FPM_2013_18_2_a4,
     author = {I. L. Laut and Z. N. Ovsyannikov},
     title = {The type of minimal branching geodesics defines the norm in a~normed space},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {67--77},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a4/}
}
TY  - JOUR
AU  - I. L. Laut
AU  - Z. N. Ovsyannikov
TI  - The type of minimal branching geodesics defines the norm in a~normed space
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 67
EP  - 77
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a4/
LA  - ru
ID  - FPM_2013_18_2_a4
ER  - 
%0 Journal Article
%A I. L. Laut
%A Z. N. Ovsyannikov
%T The type of minimal branching geodesics defines the norm in a~normed space
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 67-77
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a4/
%G ru
%F FPM_2013_18_2_a4
I. L. Laut; Z. N. Ovsyannikov. The type of minimal branching geodesics defines the norm in a~normed space. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 2, pp. 67-77. http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a4/

[1] Ivanov A. O., Tuzhilin A. A., “Razvetvlënnye geodezicheskie v normirovannykh prostranstvakh”, Izv. RAN. Ser. mat., 66:5 (2002), 33–82 | DOI | MR | Zbl

[2] Benitez C., Fernandez M., Soriano M. L., “Location of the Fermat–Torricelli medians of three points”, Trans. Am. Math. Soc., 354 (2002), 5027–5038 | DOI | MR | Zbl