Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2013_18_2_a4, author = {I. L. Laut and Z. N. Ovsyannikov}, title = {The type of minimal branching geodesics defines the norm in a~normed space}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {67--77}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a4/} }
TY - JOUR AU - I. L. Laut AU - Z. N. Ovsyannikov TI - The type of minimal branching geodesics defines the norm in a~normed space JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2013 SP - 67 EP - 77 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a4/ LA - ru ID - FPM_2013_18_2_a4 ER -
I. L. Laut; Z. N. Ovsyannikov. The type of minimal branching geodesics defines the norm in a~normed space. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 2, pp. 67-77. http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a4/
[1] Ivanov A. O., Tuzhilin A. A., “Razvetvlënnye geodezicheskie v normirovannykh prostranstvakh”, Izv. RAN. Ser. mat., 66:5 (2002), 33–82 | DOI | MR | Zbl
[2] Benitez C., Fernandez M., Soriano M. L., “Location of the Fermat–Torricelli medians of three points”, Trans. Am. Math. Soc., 354 (2002), 5027–5038 | DOI | MR | Zbl