@article{FPM_2013_18_2_a14,
author = {V. N. Salnikov},
title = {Probabilistic properties of topologies of finite metric spaces' minimal fillings},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {181--196},
year = {2013},
volume = {18},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a14/}
}
V. N. Salnikov. Probabilistic properties of topologies of finite metric spaces' minimal fillings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 2, pp. 181-196. http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a14/
[1] Erëmin A. Yu., “Formula vesa minimalnogo zapolneniya konechnogo metricheskogo prostranstva”, Mat. sb., 204:9 (2013), 51–72 | DOI | Zbl
[2] Zaretskii K. A., “Postroenie dereva po naboru rasstoyanii mezhdu visyachimi vershinami”, Uspekhi mat. nauk, 20:6 (1965), 90–92 | MR | Zbl
[3] Ivanov A. O., Tuzhilin A. A., Teoriya ekstremalnykh setei, In-t kompyut. issled., M.–Izhevsk, 2003
[4] Ivanov A. O., Tuzhilin A. A., “Odnomernaya problema Gromova o minimalnom zapolnenii”, Mat. sb., 203:5 (2012), 65–118 | DOI | MR | Zbl
[5] Ovsyannikov Z. N., Obobschënno additivnye prostranstva, (gotovitsya k pechati)
[6] Garey M. R., Graham R. L., Johnson D. S., “The complexity of computing Steiner minimal trees”, SIAM J. Appl. Math., 32 (1977), 835–859 | DOI | MR | Zbl
[7] Gromov M., “Filling Riemannian manifolds”, J. Differential Geom., 18 (1983), 1–147 | MR | Zbl
[8] Karp R. M., “Reducibility among combinatorial problems”, Complexity of Computer Computations, Proc. of a Symp. on the Complexity of Computer Computations, IBM Res. Symp. Ser., eds. R. E. Miller, J. W. Thatcher, Plenum, New York, 1972, 85–103 | MR